10.已知sinx+cosx=$\frac{1}{3}$,且x是第二象限角.
求(1)sinx-cosx
(2)sin3x-cos3x.

分析 (1)由條件利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),求得2sinxcosx=-$\frac{8}{9}$,再根據(jù)sinx-cosx=$\sqrt{{(sinx-cosx)}^{2}}$=$\sqrt{{(sinx+cosx)}^{2}-4sinxcosx}$,計(jì)算求的結(jié)果.
(2)利用立方差公式求得要求式子的值.

解答 解:(1)∵sinx+cosx=$\frac{1}{3}$,且x是第二象限角,∴sinx>0,且cosx<0,
且 1+2sinxcosx=$\frac{1}{9}$,∴2sinxcosx=-$\frac{8}{9}$,
∴sinx-cosx=$\sqrt{{(sinx-cosx)}^{2}}$=$\sqrt{{(sinx+cosx)}^{2}-4sinxcosx}$=$\sqrt{\frac{1}{9}-2•(-\frac{8}{9})}$=$\frac{\sqrt{17}}{3}$.
(2)sin3x-cos3x=(sinx-cosx)•(sin2x+sinxcosx+cos2x )=$\frac{\sqrt{17}}{3}$•(1-$\frac{4}{9}$)=$\frac{{5\sqrt{17}}}{27}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知隨機(jī)變量X-N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)個(gè)數(shù)的估計(jì)值為( 。
附:若隨機(jī)變量ξ-N(μ,σ2),則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544.
A.6038B.6587C.7028D.7539

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從-3,-2,-1,1,2,3中任取三個(gè)不同的數(shù)作為橢圓方程ax2+by2+c=0中的系數(shù),則確定不同橢圓的個(gè)數(shù)為( 。
A.20B.18C.9D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖莖葉圖表示的是甲、乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污損,若乙的平均分是89,則污損的數(shù)字是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某公司發(fā)布的2015年度財(cái)務(wù)報(bào)告顯示,該公司在去年第一季度、第二季度的營業(yè)額每季度均比上季度下跌10%,第三季度、第四季度的營業(yè)額每季度均比上季度上漲10%,則該公司在去年整年的營業(yè)額變化情況是( 。
A.下跌1.99%B.上漲1.99%C.不漲也不跌D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)A(-2,2),B(-2,6),C(4,-2),點(diǎn)P坐標(biāo)滿足x2+y2≤4,求|PA|2+|PB|2+|PC|2的取值范圍是[72,88].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,若ap=4,aq=2且p=4+q,則公差d=( 。
A.1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,E,F(xiàn)分別為PA,BD的中點(diǎn),PA=PD=AD=2.
(1)證明:EF∥平面PBC;
(2)若$PB=\sqrt{6}$,求二面角E-DF-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫出曲線C的直角坐標(biāo)方程;
(2)已知直線l與x軸的交點(diǎn)為P,與曲線C的交點(diǎn)為A,B,若AB的中點(diǎn)為D,求|PD|的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案