18.在△ABC中,$\overrightarrow{AB}=(1,\sqrt{3})$,$\overrightarrow{BC}=(3,0)$,則角B的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 利用平面向量的數(shù)量積公式求向量的夾角,注意向量夾角與三角形的內(nèi)角的關(guān)系.

解答 解:由已知得到$\overrightarrow{BA}=(-1,-\sqrt{3})$,又$\overrightarrow{BC}=(3,0)$,
所以cosB=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{-3}{2×3}=-\frac{1}{2}$,則角B的大小為$\frac{2π}{3}$;
故選:C.

點評 本題考查了利用平面向量的數(shù)量積公式求三角形的內(nèi)角;特別注意向量夾角與三角形的內(nèi)角的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.將點P的極坐標($\sqrt{2}$,$\frac{3π}{4}$)化成直角坐標為(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)變量x,y滿足約束件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-5y+10≤0}\\{x+y-4≤0}\end{array}\right.$則目標函數(shù)z=3x-4y的最大值為-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知橢圓3x2+4y2=12,則該橢圓的焦距為(  )
A.8B.6C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若復數(shù)z=$\frac{2}{1-i}$(i是虛數(shù)單位),則|z|=(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(shè)正項等比數(shù)列的前n項和為Sn,若S3=3,S9-S6=12,則S6=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)y=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$),x∈R
(1)求y的最小正周期
(2)求y的最大值及此時x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在等比數(shù)列{an}中,a1=1,公比q=2,則a3的值為(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知向量$\vec a=(\sqrt{3}sinωx,-cosωx),\vec b=(cosωx,cosωx)$,函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+\frac{1}{2}$(ω>0)的最小正周期是π.
(1)求ω的值及函數(shù)f(x)的單調(diào)減區(qū)間;
(2)當$x∈[0,\frac{π}{2}]$時,求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案