【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(Ⅰ)求證:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.
【答案】(Ⅰ)證明:函數(shù)f(x)=|x+ |+|x﹣2m|(m>0),
∴f(x)=|x+ |+|x﹣2m|≥|x+ ﹣(x﹣2m)|=| +2m|= +2m≥2 =8,
當(dāng)且僅當(dāng)m=2時(shí),取等號(hào),故f(x)≥8恒成立.
(Ⅱ)f(1)=|1+ |+|1﹣2m|,當(dāng)m> 時(shí),f(1)=1+ ﹣(1﹣2m),不等式即 +2m>10,
化簡為m2﹣5m+4>0,求得m<1,或m>4,故此時(shí)m的范圍為( ,1)∪(4,+∞).
當(dāng)0<m≤ 時(shí),f(1)=1+ +(1﹣2m)=2+ ﹣2m關(guān)于變量m單調(diào)遞減,
故當(dāng)m= 時(shí),f(1)取得最小值為17,
故不等式f(1)>10恒成立.
綜上可得,m的范圍為(0,1)∪(4,+∞).
【解析】(Ⅰ)利用絕對(duì)值三角不等式、基本不等式證得f(x)≥8恒成立.
(Ⅱ)當(dāng)m> 時(shí),不等式即 +2m>10,即m2﹣5m+4>0,求得m的范圍.當(dāng)0<m≤ 時(shí),f(1)=1+ +(1﹣2m)=2+ ﹣2m關(guān)于變量m單調(diào)遞減,求得f(1)的最小值為17,可得不等式f(1)>10恒成立.綜合可得m的范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=9,且2a1 , a3﹣1,a4+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 =2n﹣1(n∈N*),設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A= ,O為平面內(nèi)一點(diǎn).且| |,M為劣弧 上一動(dòng)點(diǎn),且 .則p+q的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績?cè)?.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記X表示兩人中進(jìn)入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測(cè)試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為菱形,E為AC與BD的交點(diǎn),PA⊥平面ABCD,M為PA中點(diǎn),N為BC中點(diǎn).
(1)證明:直線MN∥平面PCD;
(2)若點(diǎn)Q為PC中點(diǎn),∠BAD=120°,PA= ,AB=1,求三棱錐A﹣QCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種, 方案一:每滿200元減50元:
方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,裝有2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個(gè)數(shù) | 3 | 2 | 1 | 0 |
實(shí)際付款 | 半價(jià) | 7折 | 8折 | 原價(jià) |
(Ⅰ)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得半價(jià)優(yōu)惠的概率;
(Ⅱ)若某顧客購物金額為320元,用所學(xué)概率知識(shí)比較哪一種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若將f(x)的圖象向左平移 個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2xlnx﹣x2+2ax,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),求函數(shù)g(x)的極值;
(2)是否存在常數(shù)a,使得x∈[1,+∞)時(shí),f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com