設(shè)橢圓
x2
4
+
y2
3
=1的左右焦點分別為F1,F(xiàn)2,P是橢圓上的一動點,若△PF1F2是直角三角形,則△PF1F2的面積為( 。
A、3
B、3或
3
2
C、
3
2
D、6或3
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)P點為橢圓的上下頂點時,∠F1PF2取到最大值即可判斷出∠PF1F2=90°,或∠PF2F1=90°,并容易求得P點的縱坐標,從而求出△PF1F2的面積.
解答: 解:當P點為橢圓的上頂點時,∠F1PF2最大,根據(jù)橢圓的標準方程可求得∠F1PF2=60°;
∴∠F1PF2不可能是直角;
∴只能是PF1⊥x軸,或PF2⊥x軸;
x=1帶入橢圓的標準方程可得y=±
3
2
;
S△PF1F2=
1
2
×2×
3
2
=
3
2

故選C.
點評:考查橢圓的標準方程,橢圓的焦點及頂點,以及∠F1PF2何時取到最大值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l:y=2x+3,與拋物線y2=2px相切,則p=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2-4x,x∈[-4,0],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某建筑設(shè)計院為海南國際展覽館的主展廳的屋面和水平主梁位于中軸線一側(cè)的垂直截面的設(shè)計圖,設(shè)計師以屋面曲線C和水平主梁L的交噗O為原點,水平主梁所在直線為x軸建立直角坐標系xOy,設(shè)計要求如下:屋面曲線C方程為y=
x
(x≥0),水平主梁對屋面曲線的支撐構(gòu)成正三角形(稱為支梁三角形):△OP1Q1,△Q1P2Q2,△Q2P3Q3,…,△Qn-1PnQn(n∈N*),其中P1,P2,P3,…Pn在屋面曲線C上,O,Q1,Q2,Q3,…,Qn在水平主梁上,記△OP1Q1的邊長為a1(米),△Qk-1PkQk的邊長為ak(米)(k=1,2,…,n,Q0為坐標原點O),請你解答如下問題:
(Ⅰ)求a1,a2的值,并推導ak關(guān)于k的表達式;
(Ⅱ)記△Qk-1PkQk的面積為bk,Tn=b1+b2+…bn,△OPnQn的面積為tn,定義δ n=
Tn
tn
為防震系數(shù),若要求防震系數(shù)為0.7,問共需要設(shè)計多少個支梁三角形?(參考公式12+22+…n2=
n(n+1)(2n+1)
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題P:給出7個不同的實數(shù),其中必存在2個整數(shù)x,y,滿足0≤
x-y
1+xy
3
3
命題q:若x>1,n≥2,n∈N,那么
nx
-1
x-1
n
,則下列結(jié)論正確的是(  )
A、(¬p)∨q是假命題
B、(p¬)∧q是真命題
C、p∨(q¬)是假命題
D、p∧q是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:x-y+b=0與曲線
x=1+
2
cosθ
y=-2+
2
sinθ
(θ是參數(shù))相切,則b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2-4x+2y+c=0與y軸相交于AB兩點,圓心為P,PA⊥PB,則實數(shù)c的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4sinxcos(x+
π
3
)+
3

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-
π
4
,
π
6
]
上的最大值和最小值及取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正三棱柱ABC-A1B1C1中,各棱長均為4,M、N分別是BC、CC1的中點.
(1)證明:MN⊥平面AMB;
(2)求三棱錐B1-ABC的側(cè)面積.

查看答案和解析>>

同步練習冊答案