17.已知數(shù)列{an}滿(mǎn)足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

分析 (Ⅰ)由數(shù)列{an}的遞推公式依次求出a2,a3,a4;
(Ⅱ)根據(jù)a2,a3,a4值的結(jié)構(gòu)特點(diǎn)猜想{an}的通項(xiàng)公式,再用數(shù)學(xué)歸納法①驗(yàn)證n=1成立,②假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立

解答 解:(Ⅰ)由題意a1=1,a2+a1=$\sqrt{2}$,a3+a2=$\sqrt{3}$-1,a4+a3=2-$\sqrt{2}$
解得:a2=$\sqrt{2}$-1,a3=$\sqrt{3}$-$\sqrt{2}$,a4=2-$\sqrt{3}$
(Ⅱ)猜想:對(duì)任意的n∈N*,an=$\sqrt{n}$-$\sqrt{n-1}$,
①當(dāng)n=1時(shí),由a1=1=$\sqrt{1}$-$\sqrt{1-1}$,猜想成立.
②假設(shè)當(dāng)n=k (k∈N*)時(shí),猜想成立,即
ak=$\sqrt{k}$-$\sqrt{k-1}$                
則由ak+1+ak=$\sqrt{k+1}$-$\sqrt{k-1}$,得ak+1=$\sqrt{k+1}$-$\sqrt{k}$,
即當(dāng)n=k+1時(shí),猜想成立,
由①、②可知,對(duì)任意的n∈N*,猜想成立,
即數(shù)列{an}的通項(xiàng)公式為an=$\sqrt{n}$-$\sqrt{n-1}$.

點(diǎn)評(píng) 本題考查數(shù)列遞推關(guān)系式的應(yīng)用,數(shù)學(xué)歸納法證明數(shù)列問(wèn)題的方法,考查邏輯推理能力,計(jì)算能力.注意在證明n=k+1時(shí)用上假設(shè),化為n=k的形式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某校高一年級(jí)舉辦歌詠比賽,7位裁判為某班級(jí)打出的分?jǐn)?shù)如圖莖葉圖所示,左邊數(shù)字表示十位數(shù)字,右邊數(shù)字表示個(gè)位數(shù)字,則這些數(shù)據(jù)的中位數(shù)是( 。
A.84B.85C.88D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)頂點(diǎn)分別為A(0,b)和C(0,-b),兩個(gè)焦點(diǎn)分別為F1(-c,0)和F2(c,0)(c>0),過(guò)點(diǎn)E(3c,0)的直線(xiàn)AE與橢圓相交于另一點(diǎn)B,且F1A∥F2B.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線(xiàn)F2B上有一點(diǎn)H(m,n)(m≠0)在△AF1C的外接圓上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.復(fù)數(shù)1-$\sqrt{3}$i的虛部為( 。
A.$\sqrt{3}$iB.1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在高中三個(gè)年級(jí)中抽取甲、乙、丙三名同學(xué)進(jìn)行問(wèn)卷調(diào)查.調(diào)查結(jié)果顯示這三名同學(xué)來(lái)自不同的年級(jí),加入了不同的三個(gè)社團(tuán):“楹聯(lián)社”、“書(shū)法社”、“漢服社”,還滿(mǎn)足如下條件:
(1)甲同學(xué)沒(méi)有加入“楹聯(lián)社”;
(2)乙同學(xué)沒(méi)有加入“漢服社”;
(3)加入“楹聯(lián)社”的那名同學(xué)不在高二年級(jí);
(4)加入“漢服社”的那名同學(xué)在高一年級(jí);
(5)乙同學(xué)不在高三年級(jí).
試問(wèn):丙同學(xué)所在的社團(tuán)是( 。
A.楹聯(lián)社B.書(shū)法社
C.漢服社D.條件不足無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在高中三個(gè)年級(jí)中抽取甲、乙、丙三名同學(xué)進(jìn)行問(wèn)卷調(diào)查.調(diào)查結(jié)果顯示這三名同學(xué)來(lái)自不同的年級(jí),加入了不同的三個(gè)社團(tuán):“楹聯(lián)社”、“書(shū)法社”、“漢服社”,還滿(mǎn)足如下條件:
(1)甲同學(xué)沒(méi)有加入“楹聯(lián)社”;
(2)乙同學(xué)沒(méi)有加入“漢服社”;
(3)加入“楹聯(lián)社”的那名同學(xué)不在高二年級(jí);
(4)加入“漢服社”的那名同學(xué)在高一年級(jí);
(5)乙同學(xué)不在高三年級(jí).
試問(wèn):甲同學(xué)所在的社團(tuán)是(  )
A.楹聯(lián)社B.書(shū)法社
C.漢服社D.條件不足無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿(mǎn)足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn}不是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,圓C的方程是x2+y2=4.
(Ⅰ)過(guò)點(diǎn)(5,3)作直線(xiàn)l與圓C相交于E,F(xiàn)兩點(diǎn),若OE⊥OF,求直線(xiàn)l的斜率;
(Ⅱ)如圖,設(shè)M(x1,y1),P(x2,y2)是圓C上兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為M1,關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為M2,若直線(xiàn)PM1,PM2與y軸的交點(diǎn)坐標(biāo)分別為(0,m)和(0,n),試問(wèn):mn是否是定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)i為虛數(shù)單位,則(2i-x)6的展開(kāi)式中含x4項(xiàng)的系數(shù)為-60.

查看答案和解析>>

同步練習(xí)冊(cè)答案