15.已知⊙M:x2+y2=1,⊙N:x2+y2-6x+8y-11=0,則兩圓的公切線的條數(shù)是(  )
A.1B.2C.3D.4

分析 判斷兩圓的位置關(guān)系,從而得出公切線條數(shù).

解答 解:圓M的圓心為M(0,0),半徑r1=1,
圓N的圓心為N(3,-4),半徑為r2=6,
∴|MN|=5,即|MN|=r2-r1,
∴圓M與圓N內(nèi)切,
∴兩圓只有1條公切線.
故選A.

點(diǎn)評(píng) 本題考查了圓與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}、{bn}滿足${b_n}={log_2}{a_n},n∈{N^*}$,其中{bn}是等差數(shù)列,且a9a2009=4,則b1+b2+b3+…+b2017=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)拋物線fn(x)=x2-2n+1x+4n+2n的頂點(diǎn)為Pn(an,bn),cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從射擊、乒乓球、跳水、田徑四個(gè)大項(xiàng)的北京奧運(yùn)冠軍中選出10名作“奪冠之路”的勵(lì)志報(bào)告.若每個(gè)大項(xiàng)中至少選派兩人,則名額分配有幾種情況?( 。
A.10種B.15種C.20種D.25種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}是公差大于0的等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中已知函數(shù)f(x)=x2-4x+2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=an+5,Sn為數(shù)列{bn}的前n項(xiàng)和,求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$y=lg[{{x^2}+({k-3})x+\frac{9}{4}}]$的值域?yàn)镽,則實(shí)數(shù)k的取值范圍是(  )
A.(0,6)B.[0,6)C.(-∞,0]∪[6,+∞)D.(-∞,0)∪(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=-f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2 015)+f(2 016)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線M:y2=4x,圓N:(x-1)2+y2=r2(其中r為常數(shù),且r>0),過點(diǎn)(1,0)的直線l交圓N于C、D兩點(diǎn),交拋物線M于A、B兩點(diǎn),若使|AC|=|BD|成立的直線有3條,則r的取值范圍是(  )
A.(0,1)B.(1,2)C.(2,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若${(3{x^2}-\frac{1}{{2{x^3}}})^n}$的展開式中含有常數(shù)項(xiàng),則當(dāng)正整數(shù)n取得最小值時(shí),常數(shù)項(xiàng)的值為$\frac{135}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案