【題目】在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是BC的中點(diǎn).
(1)求證:A1C∥平面AB1D;
(2)設(shè)M為棱CC1的點(diǎn),且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.
【答案】
(1)證明:記A1B∩AB1=O,連接OD.
∵四邊形AA1B1B為矩形,∴O是A1B的中點(diǎn),
又∵D是BC的中點(diǎn),∴A1C∥OD.
又∵A1C平面AB1D,OD平面AB1D,
∴A1C∥平面AB1D.
(2)證明:∵△ABC是正三角形,D是BC的中點(diǎn),
∴AD⊥BC.
∵平面ABC⊥平面BB1C1C,
平面ABC∩平面BB1C1C=BC,AD平面ABC,
∴AD⊥平面BB1C1C.
或利用CC1⊥平面ABC證明AD⊥平面BB1C1C.
∵BM平面BB1C1C,∴AD⊥BM.
又∵BM⊥B1D,AD∩B1D=D,AD,B1D平面AB1D,
∴BM⊥平面AB1D.
又∵BM平面ABM,
∴平面AB1D⊥平面ABM
【解析】(1)根據(jù)線面平行的判定定理即可證明A1C∥平面AB1D;(2)根據(jù)面面垂直的判定定理進(jìn)行證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)平面與平面垂直的判定的理解,了解一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的右焦點(diǎn)為,點(diǎn)分別是橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(與軸的交點(diǎn)除外),直線交橢圓于另一個(gè)點(diǎn).
(1)當(dāng)直線經(jīng)過(guò)橢圓的右焦點(diǎn)時(shí),求的面積;
(2)①記直線的斜率分別為,求證:為定值;
②求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列A:a1,a2,a3,…,定義A的“差數(shù)列” A:,…
(I)若數(shù)列A:a1,a2,a3,…的通項(xiàng)公式,寫(xiě)出A的前3項(xiàng);
(II)試給出一個(gè)數(shù)列A:a1,a2,a3,…,使得A是等差數(shù)列;
(III)若數(shù)列A:a1,a2,a3,…的差數(shù)列的差數(shù)列 (A)的所有項(xiàng)都等于1,且==0,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1 .
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(jī)(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示).則分?jǐn)?shù)在[70,80)內(nèi)的人數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下四個(gè)命題: ①若“p且q”為假命題,則p、q均為假命題;
②命題“若,則 ”的否命題為“若,則”;
③命題“ ”的否定是“”;
④“ ”是“ ”的充分必要條件. 其中正確的命題個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,內(nèi)角,,的對(duì)邊分別為,,.若的面積為,且,,則外接圓的面積為____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com