(1)證明:任取x
1>x
2>-1,則f(x
1)-f(x
2)=
-
=
=
∵x
1>x
2>-1,∴x
1+1>0,x
2+1>0;x
2-x
1<0,
∴f(x
1)-f(x
2)<0,即f(x
1)<f(x
2),
∴函數(shù)
在區(qū)間(-1,+∞)上是單調(diào)減函數(shù).
解:(2)
=1-
,
∴函數(shù)的定義域是(-∞,-3)∪(-3,+∞),
則函數(shù)的單調(diào)增區(qū)間(-∞,-3),(-3,+∞).
(3)
=1+
,
當a>2時,此函數(shù)在區(qū)間(-2,+∞)上單調(diào)遞減,
當a=2時,無單調(diào)性;當a<2時,此函數(shù)在區(qū)間(-2,+∞)上單調(diào)遞增.
分析:(1)任取x
1>x
2>-1,再對兩個函數(shù)值作差,通分后進行整理化簡,再根據(jù)兩個自變量的關系判斷符號,然后再定號和下結論;
(2)用分離常數(shù)法對解析式進行變形,求出函數(shù)的定義域后,再求出函數(shù)的單調(diào)區(qū)間;
(3)用分離常數(shù)法對解析式進行變形,分a>2、a=2和a<2三種情況,判斷在區(qū)間上的單調(diào)性.
點評:本題的考點是函數(shù)單調(diào)性判斷及證明,考查了用定義法證明單調(diào)性的步驟:取值-作差-變形-判斷符號-下結論,判斷分式函數(shù)的單調(diào)性時常用分離常數(shù)法對解析式變形,求出定義域后再判斷函數(shù)的單調(diào)性.