已知的三個(gè)頂點(diǎn),,,其外接圓為
(1)若直線過(guò)點(diǎn),且被截得的弦長(zhǎng)為2,求直線的方程;
(2)對(duì)于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),求的半徑的取值范圍.

(1);(2).

解析試題分析:(1)求的外接圓方程可用待定系數(shù)法或利用兩邊垂直平分線的交點(diǎn)先求出圓心,再利用兩點(diǎn)之間距離公式求出半徑,求出圓的方程后再利用待定系數(shù)法求出直線的方程,此時(shí)要注意分直線斜率存在和不存在兩種情況討論;(2)可設(shè)出點(diǎn)的坐標(biāo),再把點(diǎn)的坐標(biāo)用其表示,把點(diǎn)的坐標(biāo)代入圓的方程,利用方程組恒有解去考察半徑的取值范圍,但要注意三點(diǎn)不能重合,即圓和線段無(wú)公共點(diǎn).
試題解析:(1)線段的垂直平分線方程為,線段的垂直平分線方程為,所以外接圓圓心,半徑,的方程為.      4分
設(shè)圓心到直線的距離為,因?yàn)橹本截得的弦長(zhǎng)為2,所以
當(dāng)直線垂直于軸時(shí),顯然符合題意,即為所求;          6分
當(dāng)直線不垂直于軸時(shí),設(shè)直線方程為,則,解得,
綜上,直線的方程為.                8分
(2) 直線的方程為,設(shè),
因?yàn)辄c(diǎn)是點(diǎn),的中點(diǎn),所以,又都在半徑為上,
所以     10分
因?yàn)樵撽P(guān)于的方程組有解,即以為圓心為半徑的圓與以為圓心為半徑的圓有公共點(diǎn),所以,  12分
,所以對(duì)]成立.
在[0,1]上的值域?yàn)閇,10],故. 15分
又線段與圓無(wú)公共點(diǎn),所以對(duì)成立,即.故的半徑的取值范圍為.             16分
考點(diǎn):圓的方程,直線與圓的位置關(guān)系,圓與圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓.
(1)已知不過(guò)原點(diǎn)的直線與圓相切,且在軸,軸上的截距相等,求直線的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓截得的線段長(zhǎng)為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓.
(1)若直線過(guò)點(diǎn),且與圓相切,求直線的方程;
(2)若圓的半徑為4,圓心在直線上,且與圓內(nèi)切,求圓 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓方程.
(1)若圓與直線相交于M,N兩點(diǎn),且為坐標(biāo)原點(diǎn))求的值;
(2)在(1)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓,設(shè)點(diǎn)B,C是直線上的兩點(diǎn),它們的橫坐標(biāo)分別是,點(diǎn)P在線段BC上,過(guò)P點(diǎn)作圓M的切線PA,切點(diǎn)為A
(1)若,求直線的方程;
(2)經(jīng)過(guò)三點(diǎn)的圓的圓心是,求線段(為坐標(biāo)原點(diǎn))長(zhǎng)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓心為C的圓,滿足下列條件:圓心C位于x軸正半軸上,與直線3x-4y+7=0相切,且被軸截得的弦長(zhǎng)為,圓C的面積小于13.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)點(diǎn)M(0,3)的直線l與圓C交于不同的兩點(diǎn)A,B,以O(shè)A,OB為鄰邊作平行四邊形OADB.是否存在這樣的直線l,使得直線OD與MC恰好平行?如果存在,求出l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓過(guò)點(diǎn),且圓心在直線上。
(I)求圓的方程;
(II)問(wèn)是否存在滿足以下兩個(gè)條件的直線: ①斜率為;②直線被圓截得的弦為,以為直徑的圓過(guò)原點(diǎn). 若存在這樣的直線,請(qǐng)求出其方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)和圓

(Ⅰ)過(guò)點(diǎn)的直線被圓所截得的弦長(zhǎng)為,求直線的方程;
(Ⅱ)若的面積,且是圓內(nèi)部第一、二象限的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)
的點(diǎn)稱為整點(diǎn)),求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓和點(diǎn)(1)若過(guò)點(diǎn)有且只有一條直線與圓相切,求正實(shí)數(shù)的值,并求出切線方程;(2)若,過(guò)點(diǎn)的圓的兩條弦互相垂直,設(shè)分別為圓心到弦的距離.
(Ⅰ)求的值;
(Ⅱ)求兩弦長(zhǎng)之積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案