已知圓過點(diǎn),且圓心在直線上。
(I)求圓的方程;
(II)問是否存在滿足以下兩個(gè)條件的直線: ①斜率為;②直線被圓截得的弦為,以為直徑的圓過原點(diǎn). 若存在這樣的直線,請(qǐng)求出其方程;若不存在,說明理由.

(I)(II)存在,

解析試題分析:(I)用待定系數(shù)法求圓的方程,即先設(shè)出圓的標(biāo)準(zhǔn)式方程或一般式方程,然后根據(jù)已知條件列出方程組求出未知系數(shù)即可。(II)假設(shè)直線存在,其方程為,與圓的方程聯(lián)立 消去得到關(guān)于的一元二次方程,由韋達(dá)定理得到根與系數(shù)間的關(guān)系,因直線與圓由兩個(gè)交點(diǎn)故此一元二次方程的判別式應(yīng)大于0。以為直徑的圓過原點(diǎn)即,可轉(zhuǎn)化為直線垂直斜率乘積等于,也可轉(zhuǎn)化為,還可轉(zhuǎn)化為直角三角形勾股定理即,得到。即可得到關(guān)于的方程,若方程有解則假設(shè)成立,否則假設(shè)不成立。
試題解析:解:(1)設(shè)圓C的方程為
解得D= 6,E=4,F=4
所以圓C方程為                  5分
(2)設(shè)直線存在,其方程為,它與圓C的交點(diǎn)設(shè)為A、B
則由(*)
                               7分
=因?yàn)锳B為直徑,所以,

,                                    9分
,
,,∴       11分
容易驗(yàn)證時(shí)方程(*)有實(shí)根.
故存在這樣的直線有兩條,其方程是.           12分
考點(diǎn):圓的方程,直線和圓的位置關(guān)系,考查分析問題、解決問題的能力。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O1的方程為x2+(y+1)2=6,圓O2的圓心坐標(biāo)為(2,1).若兩圓相交于A,B兩點(diǎn),且|AB|=4,求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓Cx2y2x-6ym=0與直線lx+2y-3=0.
(1)若直線l與圓C沒有公共點(diǎn),求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個(gè)頂點(diǎn),,,其外接圓為
(1)若直線過點(diǎn),且被截得的弦長為2,求直線的方程;
(2)對(duì)于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),求的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C經(jīng)過A(1,1)、B(2,)兩點(diǎn),且圓心C在直線l:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)M(3,1),直線與圓
(1)求過點(diǎn)M的圓的切線方程;
(2)若直線與圓相切,求a的值;
(3)若直線與圓相交與A,B兩點(diǎn),且弦AB的長為,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓O與離心率為的橢圓T:)相切于點(diǎn)M。

⑴求橢圓T與圓O的方程;
⑵過點(diǎn)M引兩條互相垂直的兩直線、與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合)。
①若P為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為、,求的最大值;
②若,求的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長之比為3:1;③圓心到直線的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求圓心在直線3x+y-5=0上,并且經(jīng)過原點(diǎn)和點(diǎn)(4,0)的圓的方程

查看答案和解析>>

同步練習(xí)冊(cè)答案