17.把三張不同的游園票分給10個(gè)人中的3人,分法有( 。
A.A${\;}_{10}^{3}$種B.C${\;}_{10}^{3}$ 種
C.C${\;}_{10}^{3}$A${\;}_{10}^{3}$種D.30 種

分析 直接從10人選3人,并排序即可.

解答 解:將3張電影票分給10人中的3人,每人1張,共有A103種不同的分法,
故選:A.

點(diǎn)評 本題考查了簡單的排列問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}}$-$\frac{m}{x}$(其中m為實(shí)數(shù),e是自然對數(shù)的底數(shù))
(1)若f(x)在x=2處取得極值,求f(x)在x=1處的切線方程;
(2)若x∈(0,+∞)時(shí)方程f(x)=0有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知兩圓x2+y2=10和(x-1)2+(y-3)2=20相交于A,B兩點(diǎn),則公共弦AB的長度等于( 。
A.2$\sqrt{10}$B.$\sqrt{10}$C.2$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)$\overrightarrow{a}$、$\overrightarrow$是兩個(gè)非零向量,則下列選項(xiàng)正確的是(  )
A.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則$\overrightarrow{a}$⊥$\overrightarrow$B.若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|
C.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$共線D.若$\overrightarrow{a}$,$\overrightarrow$平行,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=cos(2x+$\frac{π}{3}$),有以下結(jié)論:
①函數(shù)f(x)的最小正周期是π;     ②函數(shù)f(x)在區(qū)間[$\frac{π}{3}$,$\frac{5π}{6}$]上單調(diào)遞增;
③函數(shù)f(x)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]上的值域?yàn)閇-$\frac{1}{2}$,$\frac{1}{2}$]
④點(diǎn)(-$\frac{5}{12}$π,0)是函數(shù)f(x)圖象的一個(gè)對稱中心;
⑤將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后,對應(yīng)的函數(shù)是偶函數(shù).
其中所有正確結(jié)論的序號是①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知底面為菱形的四棱錐P-ABCD中,△ABC是邊長為2的正三角形,AP=BP=$\frac{\sqrt{2}}{2}$,PC=$\sqrt{2}$且N為線段AC的中點(diǎn),M為側(cè)棱PB的中點(diǎn),O為線段AB的中點(diǎn),
(1)求證:NM∥平面PAD;
(2)求證:直線PO⊥平面ABCD;
(3)在線段BC上是否存在一點(diǎn)K,使得AK⊥PD?若存在求出點(diǎn)K的具體位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,已知曲線C1:$\left\{\begin{array}{l}{x=1-t}\\{y=4-2t}\end{array}\right.$(t為參數(shù))與曲線C2:$\left\{\begin{array}{l}{x=2+rcosθ}\\{y=1+rsinθ}\end{array}\right.$ (θ為參數(shù),r>0)有一個(gè)公共點(diǎn)在y軸上,則r=( 。
A.$\sqrt{5}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中,在[-1,0]上單調(diào)遞減的是( 。
A.y=cosxB.y=-|x-1|C.y=log${\;}_{\frac{1}{2}}}$$\frac{2-x}{2+x}$D.y=ex+e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+y2+Dx+Ey+3=0,圓C關(guān)于直線x+y-1=0對稱,圓心在第二象限,半徑為$\sqrt{2}$.
(1)求圓C的方程;
(2)已知不過原點(diǎn)的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;
(3)已知點(diǎn)A(-1,1),若點(diǎn)B在圓C上運(yùn)動,P是AB的中點(diǎn),求動點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案