A. | y=cosx | B. | y=-|x-1| | C. | y=log${\;}_{\frac{1}{2}}}$$\frac{2-x}{2+x}$ | D. | y=ex+e-x |
分析 根據(jù)函數(shù)的單調(diào)性的性質(zhì)分別進(jìn)行判斷即可.
解答 解:A.函數(shù)y=cosx在[-1,0]上是增函數(shù),故A不滿足條件.
B.當(dāng)-1≤x≤0,y=-|x-1|=x-1為增函數(shù),不滿足條件.
C.$\frac{2-x}{2+x}$=$\frac{-(x+2)+4}{2+x}$=$\frac{4}{x+2}$-1,
當(dāng)-1≤x≤0時(shí),$\frac{4}{x+2}$-1為減函數(shù),∵y=log${\;}_{\frac{1}{2}}}$t為減函數(shù),
∴此時(shí)y=log${\;}_{\frac{1}{2}}}$$\frac{2-x}{2+x}$為增函數(shù),故C不滿足條件.
D.函數(shù)的導(dǎo)數(shù)f′(x)=ex-e-x,由f′(x)=ex-e-x<0得ex<e-x,即x<-x,即x<0,
即函數(shù)的單調(diào)遞減區(qū)間為(-∞,0],
即當(dāng)-1≤x≤0時(shí),函數(shù)y=ex+e-x為減函數(shù),故D滿足條件.
故選:D
點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的判斷,要求熟練掌握常見(jiàn)函數(shù)的單調(diào)性的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A${\;}_{10}^{3}$種 | B. | C${\;}_{10}^{3}$ 種 | ||
C. | C${\;}_{10}^{3}$A${\;}_{10}^{3}$種 | D. | 30 種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15,$\frac{4}{5}$ | B. | 18,$\frac{2}{3}$ | C. | 20,$\frac{3}{5}$ | D. | 24,$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com