16.已知函數(shù)f(x)=$\sqrt{|x+1|+|x-3|-m}$的定義域?yàn)镽.
(Ⅰ)求m的取值范圍;
(Ⅱ)若m的最大值為n,解關(guān)于x的不等式:|x-3|-2x≤2n-4.

分析 (Ⅰ)由題意,|x+1|+|x-3|-m≥0恒成立,利用基本不等式,可得求m的取值范圍;
(Ⅱ)m的最大值為4,關(guān)于x的不等式:|x-3|-2x≤4,分類討論,即可解關(guān)于x的不等式.

解答 解:(Ⅰ)由題意,|x+1|+|x-3|-m≥0恒成立.
∵|x+1|+|x-3|≥|(x+1)-)x-3)|=4,
∴m≤4;
(Ⅱ)m的最大值為4,關(guān)于x的不等式:|x-3|-2x≤4.
∴$\left\{\begin{array}{l}{x≥3}\\{x-3-2x≤4}\end{array}\right.$或$\left\{\begin{array}{l}{x<3}\\{3-x-2x≤4}\end{array}\right.$,
∴x≥3或-$\frac{1}{3}$≤x<3,
∴不等式的解集為{x|x≥-$\frac{1}{3}$}.

點(diǎn)評 本題考查恒成立問題,考查絕對值不等式的解法,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)正三棱錐A-BCD(底面是正三角形,頂點(diǎn)在底面的射影為底面中心)的所有頂點(diǎn)都在球O的球面上,BC=2,E,F(xiàn)分別是AB,BC的中點(diǎn),EF⊥DE,則球O的表面積為(  )
A.$\frac{3π}{2}$B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式|x+1|-|x-2|>1的解集為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知焦距為2$\sqrt{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,直線y=$\frac{4}{3}$與橢圓C交于P、Q兩點(diǎn)(P在Q的左邊),Q在x軸上的射影為B,且四邊形ABPQ是平行四邊形.
(1)求橢圓C的方程;
(2)斜率為k的直線l與橢圓C交于兩個(gè)不同的點(diǎn)M,N.
(i)若直線l過原點(diǎn)且與坐標(biāo)軸不重合,E是直線3x+3y-2=0上一點(diǎn),且△EMN是以E為直角頂點(diǎn)的等腰直角三角形,求k的值
(ii)若M是橢圓的左頂點(diǎn),D是直線MN上一點(diǎn),且DA⊥AM,點(diǎn)G是x軸上異于點(diǎn)M的點(diǎn),且以DN為直徑的圓恒過直線AN和DG的交點(diǎn),求證:點(diǎn)G是定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,一張A4紙的長、寬分別為2$\sqrt{2}$a,2a,A,B,C,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,關(guān)于該多面體的下列命題,正確的是①②③④.(寫出所有正確命題的序號).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,ABCD是塊矩形硬紙板,其中AB=2AD,$AD=\sqrt{2}$,E為DC的中點(diǎn),將它沿AE折成直二面角D-AE-B.
(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,右頂點(diǎn)為A,下頂點(diǎn)為B,點(diǎn)P($\frac{3}{4}$,0)滿足|PA|=|PB|.
(Ⅰ)求橢圓C的方程.
(Ⅱ)不垂直于坐標(biāo)軸的直線l與橢圓C交于M,N兩點(diǎn),以MN為直徑的圓過原點(diǎn),且線段MN的垂直平分線過點(diǎn)P,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個(gè)四棱錐的三視圖如圖所示,則該四棱錐外接球的體積為$4\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖為某幾何體的三視圖,則該幾何體的外接球的直徑為(  )
A.10B.$\sqrt{34}$C.5D.$\frac{{\sqrt{34}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案