A. | $\frac{3π}{2}$ | B. | 6π | C. | 8π | D. | 12π |
分析 根據(jù)EF與DE的垂直關(guān)系,結(jié)合正棱錐的性質(zhì),判斷三條側(cè)棱互相垂直,再求得側(cè)棱長(zhǎng),根據(jù)表面積公式計(jì)算即可
解答 解:∵E、F分別是AB、BC的中點(diǎn),∴EF∥AC,
又∵EF⊥DE,
∴AC⊥DE,
取BD的中點(diǎn)O,連接AO、CO,
∵三棱錐A-BCD為正三棱錐,
∴AO⊥BD,CO⊥BD,∴BD⊥平面AOC,又AC?平面AOC,∴AC⊥BD,
又DE∩BD=D,∴AC⊥平面ABD;
∴AC⊥AB,
設(shè)AC=AB=AD=x,則x2+x2=4⇒x=$\sqrt{2}$,
所以三棱錐對(duì)應(yīng)的長(zhǎng)方體的對(duì)角線為$\sqrt{3×2}$=$\sqrt{6}$,
所以它的外接球半徑為$\frac{\sqrt{6}}{2}$,
∴球O的表面積為$4π•\frac{6}{4}$=6π
故選:B.
點(diǎn)評(píng) 本題考查了正三棱錐的外接球表面積求法,關(guān)鍵是求出三棱錐的三條側(cè)棱長(zhǎng)度,得到對(duì)應(yīng)的長(zhǎng)方體對(duì)角線,即外接球的直徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | $\frac{9}{2}$ | C. | $\frac{13}{6}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {3} | B. | {7,8} | C. | {7,8,9} | D. | {1,2,3,4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | arccos(sinx) | B. | π+arccos(sinx) | C. | -arccos(sinx) | D. | -π-arccos(sinx) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{32\sqrt{5}π}}{25}$ | B. | $\frac{{32\sqrt{5}π}}{75}$ | C. | $\frac{8π}{5}$ | D. | $\frac{16π}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{17}{3}$ | B. | $\frac{22}{3}$ | C. | $\frac{32}{3}$ | D. | $\frac{35}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com