20.若cos($\frac{π}{4}$-θ)=m,則cos($\frac{3π}{4}$+θ)=-m(用m表示).

分析 直接利用誘導公式化簡求解即可.

解答 解:cos($\frac{π}{4}$-θ)=m,則cos($\frac{3π}{4}$+θ)=cos[π-($\frac{π}{4}$-θ)]=-cos($\frac{π}{4}$-θ)=-m,
故答案為:-m.

點評 本題考查誘導公式的應用,三角函數(shù)化簡求值,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.給出下列四個命題
①若a>b>0,則a-$\frac{1}{a}$>b-$\frac{1}$;
②$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$≥2;
③不等式$\frac{1}{x}$<1的解集是(-∞,0)∪(1,+∞);
④若b>a>0,則a<$\sqrt{ab}$≤$\frac{a+b}{2}$<b.其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題p:數(shù)列{an}的前n項和Sn=an2+bn+c(a≠0);命題q:數(shù)列{an}是等差數(shù)列.則p是q的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=3,an=3an-1+3n+1(n=2,3,4…)
(1)證明:數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=$\frac{lg(x-2)}{\sqrt{{x}^{2}-1}}$的定義域是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=log4(4x+1)+2mx(m∈R)
(Ⅰ)當m=0時,求f(x)的值域
(Ⅱ)若f(x)是偶函數(shù),求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.化簡$\frac{sin(α-90°)•cos(α+450°)•tan(-α)}{cos(-180°-α)•tan(180°-α)sin(-α-180°)}$的結果為(  )
A.1B.-1C.tanαD.-tanα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知α∈(-$\frac{π}{2}$,0),sin(-α-$\frac{2015}{2}$π)=$\frac{\sqrt{5}}{5}$,則sin(-π-α)=( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.對點(x,y)的一次操作變換記為P1(x,y),定義其變換法則為P1(x,y)=(x+y,x-y),且規(guī)定Pn(x,y)=P1(Pn-1(x+y,x-y))(n為大于1的整數(shù)),如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2),則P2017(1,-1)=( 。
A.(0,21008B.(21008,-21008C.(21009,-21009D.(0,21009

查看答案和解析>>

同步練習冊答案