【題目】中,,分別為的中點,,如圖1.以為折痕將折起,使點到達點的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面

(2)若平面平面,求直線與平面所成角的正弦值。

【答案】(1)見解析;(2)直線與平面所成角的正弦值為.

【解析】

(1)在題圖1中,可證 ,在題圖2中,平面.進而得到平面.從而證得平面平面;

(2)可證得平面. .則以為坐標原點,分別以,,的方向為軸、軸、軸的正方向建立如圖所示的空間直角坐標系,利用空間向量可求直線與平面所成角的正弦值.

(1)證明:在題圖1中,因為,且的中點.由平面幾何知識,得.

又因為的中點,所以

在題圖2中,,,且,

所以平面,

所以平面.

又因為平面,

所以平面平面.

(2)解:因為平面平面,平面平面,平面.

所以平面.

又因為平面

所以.

為坐標原點,分別以,的方向為軸、軸、軸的正方向建立如圖所示的空間直角坐標系

在題圖1中,設,則,,.

,,.

所以,,.

為平面的法向量,

,即

,則.所以.

平面所成的角為,

.

所以直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】實數(shù)a,b滿足ab>0ab,由ab、按一定順序構成的數(shù)列( 。

A. 可能是等差數(shù)列,也可能是等比數(shù)列

B. 可能是等差數(shù)列,但不可能是等比數(shù)列

C. 不可能是等差數(shù)列,但可能是等比數(shù)列

D. 不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面積為4,b=4,求△ABC的周長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,BC對應的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20172月底,90多所自主招生試點高校將陸續(xù)出臺2017年自主招生簡章,某校高三年級選取了在期中考試中成績優(yōu)異的100名學生作為調查對象,對是否準備參加2017年的自主招生考試進行了問卷調查,其中準備參加”“不準備參加待定的人數(shù)如表:

準備參加

不準備參加

待定

男生

30

6

15

女生

15

9

25

(1)在所有參加調查的同學中,在三種類型中用分層抽樣的方法抽取20人進行座談交流,則在準備參加”“不準備參加待定的同學中應各抽取多少人?

(2)準備參加的同學中用分層抽樣方法抽取6,從這6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中點.求證:

(1)DE=DA;

(2)平面BDM⊥平面ECA;

(3)平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是首項的等差數(shù)列,設.

(1)求證:是等比數(shù)列;

(2)記,求數(shù)列的前項和;

(3)在(2)的條件下,記,若對任意正整數(shù),不等式恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形,,.的中點,底面,在平面上的正投影為點,延長于點.

(1)求證:中點;

(2)若,,在棱上確定一點,使得平面,并求出與面所成角的正弦值.

查看答案和解析>>

同步練習冊答案