15.若集合P={x|0≤x≤3},Q={x|x>1},則P∩Q=( 。
A.{x|x≥0}B.{x|x>1}C.{x|1<x≤3}D.{x|1≤x≤3}

分析 直接由交集的運(yùn)算性質(zhì)計(jì)算得答案.

解答 解:集合P={x|0≤x≤3},Q={x|x>1},
則P∩Q={x|0≤x≤3}∩{x|x>1}={x|1<x≤3}.
故選:C.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在正方體ABCD-A1B1C1D1中,O、O1分別為底面ABCD和A1B1C1D1的中心,以O(shè)O1所在直線為軸旋轉(zhuǎn)線段BC1形成的幾何體的正視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.與-60°的終邊相同的角是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)隨機(jī)變量X服從二項(xiàng)分布,且期望E(X)=3,P=$\frac{1}{5}$,則方差D(X)等于( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{12}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{a}{x}$(a∈R)
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)f(x)在[1,e]上的最小值為$\frac{3}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=x+ex-a,g(x)=ln$\sqrt{2x+1}$-4ea-x(其中e為自然對(duì)數(shù)的底數(shù)),若存在實(shí)數(shù)x0,使f(x0)-g(x0)=4成立,則實(shí)數(shù)a的值為( 。
A.ln2-1B.1-ln2C.ln2D.-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.用反證法證明命題“設(shè)為實(shí)數(shù),則方程e${\;}^{{x}^{2}+ax+b}$=l至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)設(shè)是( 。
A.方程e${\;}^{{x}^{2}+ax+b}$=l沒(méi)有實(shí)根
B.方程e${\;}^{{x}^{2}+ax+b}$=l至多有一個(gè)實(shí)根
C.方程e${\;}^{{x}^{2}+ax+b}$=l至多有兩個(gè)實(shí)根
D.方程e${\;}^{{x}^{2}+ax+b}$=l恰好有兩個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知變量X服從正態(tài)分布N(4,σ2)且P(X≥2)=0.6,則P(X>6)=( 。
A.0.4B.0.3C.0.2D.0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某市重點(diǎn)中學(xué)奧數(shù)培訓(xùn)班共有15人,分為兩個(gè)小組,在一次階段考試中兩個(gè)小組成績(jī)的莖葉圖如圖所示,甲組學(xué)生成績(jī)的極差是m,乙組學(xué)生成績(jī)的中位數(shù)是86,則m+n的值是21.

查看答案和解析>>

同步練習(xí)冊(cè)答案