分析 先求出弦長|AB|的長度,然后結(jié)合圓與直線的位置關(guān)系圖象,然后將ABCD的面積看成兩個(gè)三角形△ABC和△ACD的面積之和,分析可得當(dāng)BD為AC的垂直平分線時(shí),四邊形ABCD的面積最大.
解答 解:把圓M:x2+y2-2x+2y-1=0化為標(biāo)準(zhǔn)方程:(x-1)2+(y+1)2=3,圓心(1,-1),半徑r=$\sqrt{3}$
直線與圓相交,由點(diǎn)到直線的距離公式的弦心距d=$\frac{|1×1-1×(-1)-1|}{\sqrt{{1}^{2}+(-1)^{2}}}$=$\frac{\sqrt{2}}{2}$,
由勾股定理的半弦長=$\sqrt{3-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{10}}{2}$,所以弦長|AB|=2×$\frac{\sqrt{10}}{2}$=$\sqrt{10}$.
又B,D兩點(diǎn)在圓上,并且位于直線AC的兩側(cè),
四邊形ABCD的面積可以看成是兩個(gè)三角形△ABC和△ACD的面積之和,
如圖所示,
當(dāng)B,D為如圖所示位置,即BD為弦AC的垂直平分線時(shí)(即為直徑時(shí)),
兩三角形的面積之和最大,即四邊形ABCD的面積最大,
最大面積為:S=$\frac{1}{2}$×|AB|×|CE|+$\frac{1}{2}$×|AB|×|DE|
=$\frac{1}{2}×|AB|×|CD|=\frac{1}{2}×\sqrt{10}×2\sqrt{3}$=$\sqrt{30}$.
故答案為:$\sqrt{30}$.
點(diǎn)評(píng) 本題涉及到圓與位置關(guān)系的題目,可采用數(shù)形結(jié)合思想,實(shí)現(xiàn)代數(shù)和幾何間的轉(zhuǎn)化,然后分析題目具體問題,求解即可,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 19 | C. | 20 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≥5 | B. | k≥6 | C. | k≥7 | D. | k>7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7≤z≤8 | B. | -7≤z≤10 | C. | 8≤z≤10 | D. | 0≤z≤10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com