12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=2,S5=15,則數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2017項(xiàng)和為( 。
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2017}{2018}$D.$\frac{2018}{2017}$

分析 設(shè)等差數(shù)列{an}的公差為d,由a2=2,S5=15,可得a1+d=2,$5{a}_{1}+\frac{5×4}{2}$d=15,解得a1,d,可得an,即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a2=2,S5=15,
∴a1+d=2,$5{a}_{1}+\frac{5×4}{2}$d=15,解得a1=d=1,
∴an=1+(n-1)=n.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
則數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2017項(xiàng)和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2017}-\frac{1}{2018})$=1-$\frac{1}{2018}$=$\frac{2017}{2018}$.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=xlnx+a(a∈R)
(Ⅰ) 若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若0<x1<x2,求證:對(duì)于任意x∈(x1,x2),不等式$\frac{{f(x)-f({x_1})}}{{x-{x_1}}}<\frac{{f(x)-f({x_2})}}{{x-{x_2}}}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算下列各式的值:
(1)(m${\;}^{\frac{1}{4}}$n${\;}^{-\frac{3}{8}}$)8;
(2)log2.56.25+lg$\frac{1}{100}$+ln(e$\sqrt{e}$)+log2(log216).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\sqrt{x},x>0}\\{(x-\frac{1}{x})^{4},x<0}\end{array}\right.$,則f(f(2))=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知F(1,0)為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),離心率$\frac{\sqrt{2}}{2}$.
(1)求橢圓的方程;
(2)P為橢圓上一點(diǎn),橢圓在P點(diǎn)處的切線與直線x=c和右準(zhǔn)線x=$\frac{{a}^{2}}{c}$分別交于點(diǎn)M,N.
①若P(0,1),求$\frac{MF}{NF}$的值;
②探究當(dāng)P在橢圓上移動(dòng)時(shí),$\frac{MF}{NF}$的值是否為定值?若是,求出此定值,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={3,32,33,…,3n}(n≥3),從中選出3個(gè)不同的數(shù),使這3個(gè)數(shù)按一定的順序排列構(gòu)成等比數(shù)列,記滿足此條件的等比數(shù)列的個(gè)數(shù)為f(n)
(Ⅰ)f(5)=8;
(Ⅱ)若f(n)=220,則n=22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若偶函數(shù)y=f(x)(x∈R)滿足f(1+x)=f(1-x),且當(dāng)x∈[-1,0]時(shí),f(x)=x2,則函數(shù)g(x)=f(x)-|lgx|的零點(diǎn)個(gè)數(shù)為10個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知拋物線C:y2=4x,P為C上一點(diǎn)且縱坐標(biāo)為2,Q,R是C上的兩個(gè)動(dòng)點(diǎn),且PQ⊥PR.
(Ⅰ)求過(guò)點(diǎn)P,且與C恰有一個(gè)公共點(diǎn)的直線l的方程;
(Ⅱ)求證:QP過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.sin40°(tan190°-$\sqrt{3}$)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案