求以橢圓的焦點(diǎn)為焦點(diǎn),且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.

解析試題分析:首先設(shè)出雙曲線的標(biāo)準(zhǔn)方程,然后利用與橢圓的關(guān)系、雙曲線過點(diǎn)建立組可求得a,b的值.
試題解析:由橢圓的標(biāo)準(zhǔn)方程可知,橢圓的焦點(diǎn)在軸上.
設(shè)雙曲線的標(biāo)準(zhǔn)方程為
根據(jù)題意, 解得(不合題意舍去),
∴雙曲線的標(biāo)準(zhǔn)方程為
考點(diǎn):1、橢圓的幾何性質(zhì);2、雙曲線的方程求法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過點(diǎn). 過它的兩個(gè)焦點(diǎn),分別作直線交橢圓于A、B兩點(diǎn),交橢圓于C、D兩點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知點(diǎn),過點(diǎn)的直線與過點(diǎn)的直線相交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,如果,求點(diǎn)的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點(diǎn),則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),過點(diǎn)垂直的直線和線段的垂直平分線相交于點(diǎn)
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(1)中的軌跡上的定點(diǎn)作兩條直線分別與軌跡相交于,兩點(diǎn).試探究:當(dāng)直線,的斜率存在且傾斜角互補(bǔ)時(shí),直線的斜率是否為定值?若是,求出這個(gè)定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點(diǎn),且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,直線交橢圓兩點(diǎn).
(Ⅰ)求橢圓的焦點(diǎn)坐標(biāo)及長軸長;
(Ⅱ)求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知橢圓的兩個(gè)焦點(diǎn)分別為,且到直線的距離等于橢圓的短軸長.

(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過,是橢圓上的動(dòng)點(diǎn)且在圓外,過作圓的切線,切點(diǎn)為,當(dāng)的最大值為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),,直線AG,BG相交于點(diǎn)G,且它們的斜率之積是
(Ⅰ)求點(diǎn)G的軌跡的方程;
(Ⅱ)圓上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn),直線PA交(Ⅰ)中的軌跡于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知離心率的橢圓一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓兩點(diǎn),且,求直線方程.

查看答案和解析>>

同步練習(xí)冊答案