如圖所示,已知橢圓的兩個(gè)焦點(diǎn)分別為,且到直線的距離等于橢圓的短軸長.

(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過,是橢圓上的動(dòng)點(diǎn)且在圓外,過作圓的切線,切點(diǎn)為,當(dāng)的最大值為時(shí),求的值.

(Ⅰ) ;(Ⅱ).

解析試題分析:(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,“先定位后定量”,由題知焦點(diǎn)在軸,且,由點(diǎn)到直線的距離求,再由,進(jìn)而寫出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)圓的圓心為,半徑為,連接,則,設(shè)點(diǎn),在中,利用勾股定理并結(jié)合,表示,其中,轉(zhuǎn)化為自變量為的二次函數(shù)的最值問題處理.
試題解析:(Ⅰ)設(shè)橢圓的方程為(),依題意,,所以 ,又,所以,所以橢圓的方程為.
(Ⅱ) 設(shè)(其中), 圓的方程為,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/68/e/fzpyd.png" style="vertical-align:middle;" />,
所以,當(dāng)時(shí),當(dāng)時(shí),取得最大值,且,解得(舍去).
當(dāng)時(shí),當(dāng)時(shí),取最大值,且,解得,又,所以.
綜上,當(dāng)時(shí),的最大值為.
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、切線的性質(zhì);3、二次函數(shù)最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,點(diǎn),過的直線交拋物線兩點(diǎn).
(1)若,拋物線的焦點(diǎn)與中點(diǎn)的連線垂直于軸,求直線的方程;
(2)設(shè)為小于零的常數(shù),點(diǎn)關(guān)于軸的對稱點(diǎn)為,求證:直線過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求以橢圓的焦點(diǎn)為焦點(diǎn),且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓E的中心是原點(diǎn)O,其右焦點(diǎn)為F(2,0),過x軸上一點(diǎn)A(3,0)作直線與橢圓E相交于P,Q兩點(diǎn),且的最大值為.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè),過點(diǎn)P且平行于y軸的直線與橢圓E相交于另一點(diǎn)M,試問M,F,Q是否共線,若共線請證明;反之說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,一個(gè)頂點(diǎn)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為的直線,使直線與橢圓交于不同的兩點(diǎn),滿足. 若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線,設(shè)點(diǎn),為拋物線上的動(dòng)點(diǎn)(異于頂點(diǎn)),連結(jié)并延長交拋物線于點(diǎn),連結(jié)、并分別延長交拋物線于點(diǎn)、,連結(jié),設(shè)的斜率存在且分別為、.

(1)若,,求;
(2)是否存在與無關(guān)的常數(shù),是的恒成立,若存在,請將、表示出來;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),動(dòng)點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)在直線上取一點(diǎn),過點(diǎn)作軌跡的兩條切線,切點(diǎn)分別為.問:是否存在點(diǎn),使得直線//?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知坐標(biāo)平面內(nèi),.動(dòng)點(diǎn)P與外切與內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長;
(3)過D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案