6.已知Sn為各項均為正數(shù)的數(shù)列{an}的前n項和,a1∈(0,2),an2+3an+2=6Sn
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Tn,若對?n∈N*,t≤4Tn恒成立,求實數(shù)t的最大值.

分析 (1)把n=1代入an2+3an+2=6Sn求得首項a1=1.結(jié)合已知條件an2+3an+2=6Sn得到:(an+1+an)(an+1-an-3)=0.由此求得公差d=3,根據(jù)等差數(shù)列的通項公式推知an=3n-2.
(2)利用裂項求和求得Tn,然后根據(jù)不等式t≤4Tn實數(shù)t的最大值.

解答 解:(1)當n=1時,由$a_n^2+3{a_n}+2=6{S_n}$,
得$a_1^2+3{a_1}+2=6{a_1}$,即$a_1^2-3{a_1}+2=0$.
又a1∈(0,2),
解得a1=1.由$a_n^2+3{a_n}+2=6{S_n}$,
可知$a_{n+1}^2+3{a_{n+1}}+2=6{S_{n+1}}$.
兩式相減,得$a_{n+1}^2-a_n^2+3({{a_{n+1}}-{a_n}})=6{a_{n+1}}$,
即(an+1+an)(an+1-an-3)=0.
由于an>0,可得an+1-an-3=0,
即an+1-an=3,
所以{an}是首項為1,公差為3的等差數(shù)列.
所以an=1+3(n-1)=3n-2.
(2)由an=3n-2,可得${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({3n-2})({3n+1})}}=\frac{1}{3}({\frac{1}{3n-2}-\frac{1}{3n+1}}),{T_n}={b_1}+{b_2}+…+{b_n}$=$\frac{1}{3}[{({1-\frac{1}{4}})+({\frac{1}{4}-\frac{1}{7}})+…+({\frac{1}{3n-2}-\frac{1}{3n+1}})}]=\frac{n}{3n+1}$.
因為${T_{n+1}}-{T_n}=\frac{n+1}{{3({n+1})+1}}-\frac{n}{3n+1}=\frac{1}{{({3n+1})({3n+4})}}>0$,
所以Tn+1>Tn,所以數(shù)列{Tn}是遞增數(shù)列.
所以$t≤4{T_n}?\frac{t}{4}≤{T_n}?\frac{t}{4}≤{T_1}=\frac{1}{4}?t≤1$,
所以實數(shù)t的最大值是1.

點評 本題考查了等差數(shù)列的通項公式及其前n項和公式、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.若復數(shù)(2-i)(a+2i)是純虛數(shù),則實數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象經(jīng)過點(3,8),則f(-1)的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若sinα+$\sqrt{3}$cosα=2,則tan(π+α)=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},則A∩B=(  )
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知等比數(shù)列{an}中,a1=1,a4=8,則其前4項之和為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓$Ω:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,直線$\frac{{\sqrt{2}}}{2}x+y=1$經(jīng)過Ω的右頂點和上頂點.
(1)求橢圓Ω的方程;
(2)設(shè)橢圓Ω的右焦點為F,過點G(2,0)作斜率不為0的直線交橢圓Ω于M,N兩點.設(shè)直線FM和FN的斜率為k1,k2
①求證:k1+k2為定值;
②求△FMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)集合A={x|x2-x-6>0},B={x|-3≤x≤1},則A∩B=( 。
A.(-2,1]B.(-3,-2]C.[-3,-2)D.(-∞,1]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)矩陣M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩陣M的特征值.

查看答案和解析>>

同步練習冊答案