A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由題意和向量的夾角公式可得夾角余弦值,則兩向量夾角可求.
解答 解:∵向量$\overline{a}$=(1,-$\sqrt{3}$),$\overline$=(-2,0),
設(shè)$\overline{a}$與$\overline$的夾角為θ,
∴由夾角公式可得cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{1×(-2)+(-\sqrt{3})×0}{\sqrt{{1}^{2}+(-\sqrt{3})^{2}}•\sqrt{(-2)^{2}+{0}^{2}}}$=$-\frac{1}{2}$,
又θ∈[0,π],可得夾角θ=$\frac{2π}{3}$.
故選:C.
點評 本題考查利用數(shù)量積求向量的夾角,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1+\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{5\sqrt{2}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com