A. | $\frac{3}{4}$ | B. | $\frac{4}{5}$ | C. | $\frac{9}{16}$ | D. | $\frac{16}{25}$ |
分析 設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),由漸近線方程可得$\frac{a}$=$\frac{3}{4}$,再由焦點可得c=5,求得a=4,b=3,進(jìn)而得到雙曲線的方程,設(shè)A(m,n),可得B(-m,-n),C(s,t),代入雙曲線的方程相減,結(jié)合直線的斜率公式化簡整理即可得到所求值.
解答 解:設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
由雙曲線E的漸近線方程為3x±4y=0,
可得$\frac{a}$=$\frac{3}{4}$,
又E的右焦點為(5,0),可得c=5,即a2+b2=25,
解得a=4,b=3,
即有雙曲線的方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,
設(shè)A(m,n),可得B(-m,-n),C(s,t),
可得$\frac{{m}^{2}}{16}$-$\frac{{n}^{2}}{9}$=1,$\frac{{s}^{2}}{16}$-$\frac{{t}^{2}}{9}$=1,
相減可得$\frac{{m}^{2}-{s}^{2}}{16}$=$\frac{{n}^{2}-{t}^{2}}{9}$,
即有k1k2=$\frac{n-t}{m-s}$•$\frac{n+t}{m+s}$=$\frac{{n}^{2}-{t}^{2}}{{m}^{2}-{s}^{2}}$=$\frac{9}{16}$.
故選:C.
點評 本題考查直線的斜率之積,注意運用雙曲線的漸近線方程和雙曲線的方程的關(guān)系,以及點滿足雙曲線的方程,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{20}{7}$,-$\frac{8}{7}$) | B. | (-∞,-3)∪(-$\frac{8}{7}$,+∞) | C. | (-2,-$\frac{10}{7}$) | D. | (-∞,-2)∪(-$\frac{10}{7}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | -1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-1,\frac{1}{2}})∪[{2,+∞})$ | B. | $[{-1,\frac{1}{2}}]∪({2,+∞})$ | C. | [2,+∞) | D. | $[{-1,\frac{1}{2}})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com