【題目】已知函數(shù),.
(Ⅰ)求證:當時,;
(Ⅱ)若存在,使,求的取值范圍.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)所證明不等式轉(zhuǎn)化為,設(shè), 利用導數(shù)判斷函數(shù)的單調(diào)性,并利用最值證明;
(Ⅱ)首先判斷函數(shù)的單調(diào)性,再分和兩種情況求的取值范圍,當時,成立,求,當時,根據(jù)(1)的結(jié)論證明時,,當時,設(shè),利用導數(shù)證明,綜上證明過程求的取值范圍.
解:(Ⅰ)解:的定義域為,
,即
設(shè),
,故在為增函數(shù),
當時,,得證.
(Ⅱ),故的減區(qū)間為,增區(qū)間為,
對于,
(1)當時,,需要,;
(2)當時,先證若,有,
(。┤,,設(shè),,
是減函數(shù),,
,
(ⅱ)若,設(shè),
是增函數(shù),,,
故有,使,在減,在增,
,,
時,,得
由(。áⅲ┑,當時,
此時由于,時,,故,滿足題意.
綜上可得,的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】某房地產(chǎn)商建有三棟樓宇,三樓宇間的距離都為2千米,擬準備在此三樓宇圍成的區(qū)域外建第四棟樓宇,規(guī)劃要求樓宇對樓宇,的視角為,如圖所示,假設(shè)樓宇大小高度忽略不計.
(1)求四棟樓宇圍成的四邊形區(qū)域面積的最大值;
(2)當樓宇與樓宇,間距離相等時,擬在樓宇,間建休息亭,在休息亭和樓宇,間分別鋪設(shè)鵝卵石路和防腐木路,如圖,已知鋪設(shè)鵝卵石路、防腐木路的單價分別為,(單位:元千米,為常數(shù)).記,求鋪設(shè)此鵝卵石路和防腐木路的總費用的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的方程有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,AD⊥PD,點F為棱PD的中點.
(1)在棱BC上是否存在一點E,使得CF∥平面PAE,并說明理由;
(2)若AC⊥PB,二面角D﹣FC﹣B的余弦值為時,求直線AF與平面BCF所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體,過對角線作平面交棱于點,交棱于點,下列正確的是( )
A.平面分正方體所得兩部分的體積相等;
B.四邊形一定是平行四邊形;
C.平面與平面不可能垂直;
D.四邊形的面積有最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知0<m<2,動點M到兩定點F1(﹣m,0),F2(m,0)的距離之和為4,設(shè)點M的軌跡為曲線C,若曲線C過點.
(1)求m的值以及曲線C的方程;
(2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com