如圖,平面,,分別為的中點(diǎn).

(I)證明:平面;

(II)求與平面所成角的正弦值.

 

【答案】

(I)只需證;(II)

【解析】

試題分析:(I)證明:連接,  在中,分別是的中點(diǎn),所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD。

(Ⅱ)在中,,所以

而DC平面ABC,,所以平面ABC

平面ABE, 所以平面ABE平面ABC, 所以平面ABE

由(Ⅰ)知四邊形DCQP是平行四邊形,所以

所以平面ABE, 所以直線AD在平面ABE內(nèi)的射影是AP,

所以直線AD與平面ABE所成角是

中, ,

所以

考點(diǎn):線面平行的判定定理;線面角。

點(diǎn)評(píng):本題主要考查了空間中直線與平面所成的角,屬立體幾何中的?碱}型,較難.本題也可以用向量法來做。而對(duì)于利用向量法求線面角關(guān)鍵是正確寫出點(diǎn)的坐標(biāo)和求解平面的一個(gè)法向量。注意計(jì)算要仔細(xì)、認(rèn)真。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABCD⊥平面ABE,其中四邊形ABCD是正方形,△ABE是等邊三角形,且AB=2,點(diǎn)F、G分別是BC、AE的中點(diǎn).
(Ⅰ)求三棱錐F-ABE的體積;
(Ⅱ)求證:BG∥平面EFD;
(Ⅲ)若點(diǎn)P在線段DE上運(yùn)動(dòng),求證:BG⊥AP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p、q分別是M到直線l1和l2的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè);
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè);
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
上述命題中,正確命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E,F(xiàn),G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:PB∥平面EFG
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離為0.8,若存在,求出CQ的長,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•溫州模擬)如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:PB∥平面EFG;
(2)求異面直線EG與BD所成的角;
(3)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離為
45
.若存在,求出CQ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
求證:PB∥平面EFG.

查看答案和解析>>

同步練習(xí)冊答案