在銳角△ABC中,若A=2B,則下列敘述正確的是

①sin3B=sin2C  ②tanB·tan=1  ③<B<

A.①②                B.②③                C.①③                D.①②③

B

解析:∵A=2B,∴C=π-A-B=π-3B.∴sinC=sin(π-3B)=sin3B,①不正確.

由C=π-3B,得=-B,B=-,∴tanB=tan(-)=cot.

∴tanB·tan=1,②正確.∵A=2B<,∴B<.C=π-3B<,B>.∴<B<,③正確.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,若lg (1+sinA)=m,且lg
1
1-sinA
=n,則lgcosA等于( 。
A、
1
2
(m-n)
B、m-n
C、
1
2
(m+
1
n
D、m+
1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R

(I)化簡函數(shù)f(x)的解析式,并求函數(shù)f(x)的最小正周期;
(Ⅱ)在銳角△ABC中,若f(A)=1,
AB
AC
=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,若C=2B,則
c
b
的范圍( 。
A、(
2
,
3
)
B、(
3
,2)
C、(0,2)
D、(
2
,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,若a=2,b=3,則邊長c的取值范圍是
5
13
5
,
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函數(shù)f(x)=
m
n
,且f(x)圖象上一個最高點為P(
π
12
,2)
,與P最近的一個最低點的坐標為(
12
,-2)

(1)求函數(shù)f(x)的解析式;
(2)設a為常數(shù),判斷方程f(x)=a在區(qū)間[0,
π
2
]
上的解的個數(shù);
(3)在銳角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范圍.

查看答案和解析>>

同步練習冊答案