分析 (1)由an+1an=2an+1-1化簡可得(an+1-1)(an-1)=(an+1-1)-(an-1),從而可得$\frac{1}{_{n+1}}$-$\frac{1}{_{n}}$=-1,從而證明;
(2)由(1)可求得an=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,從而可得cn=1+$\frac{1}{n(n+2)}$=1+$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),從而利用裂項(xiàng)求和法求得.
解答 證明:(1)∵an+1an=2an+1-1,
∴(an+1-1)(an-1)=an+1an-an+1-an+1
=2an+1-1-an+1-an+1=(an+1-1)-(an-1),
易知an-1≠0,
即bn+1bn=bn+1-bn,
故$\frac{1}{_{n+1}}$-$\frac{1}{_{n}}$=-1,
又∵$\frac{1}{_{1}}$=$\frac{1}{{a}_{1}-1}$=-2,
∴數(shù)列{$\frac{1}{_{n}}$}是以-2為首項(xiàng),-1為公差的等差數(shù)列;
(2)由(1)知,$\frac{1}{_{n}}$=-n-1,故bn=-1=-$\frac{1}{n+1}$,
故an=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
故cn=$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{\frac{n+1}{n+2}}{\frac{n}{n+1}}$=1+$\frac{1}{n(n+2)}$=1+$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
故Tn=1+$\frac{1}{2}$(1-$\frac{1}{3}$)+1+$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$)+1+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+…+1+$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)
=n+$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=n+$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<n+$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查了數(shù)列的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了構(gòu)造法與轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 125 | B. | 15 | C. | 100 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 等邊三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 6 | C. | 24 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com