11.已知f(x)=e${\;}^{cos{x}^{2}}$,求dy.

分析 利用復合函數(shù)的求導法則,分別求導.

解答 解:y=e${\;}^{cos{x}^{2}}$,
兩邊取微分,
dy=${e}^{cos{x}^{2}}$(cosx2)′dx,
∴dy=${e}^{cos{x}^{2}}$(-sinx2)•2xdx,
∴dy=-2xsinx2${e}^{cos{x}^{2}}$dx.

點評 本題考查復合函數(shù)的求導法則,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1an=2an+1-1,令bn=an-1.
(1)求證:數(shù)列{$\frac{1}{_{n}}$}為等差數(shù)列;
(2)設cn=$\frac{{a}_{n+1}}{{a}_{n}}$,求證:數(shù)列{cn}的前n項和Tn<n+$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若點A,B在曲線y=$\sqrt{{x}^{2}+2}$上,則$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求自然數(shù)1~100的各位數(shù)字之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,在矩形ABCD中,E是CD上的點,以AE為折痕將△ADE向上折起,連接BD,BE,求證:
(1)若AD⊥BD,則平面ABD⊥平面BDE;
(2)以上命題的逆命題是否成立?若成立,給出證明,否則,舉出反例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,0),$\overrightarrow{c}$=(-1,-2),則-2$\overrightarrow{a}$+$\overrightarrow$-3$\overrightarrow{c}$=(1,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若某四面體的三視圖是全等的等腰直角三角形,且其直角邊的長為6,則該四面體的體積是( 。
A.108B.72C.36D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=-1$的漸近線為(  )
A.$y=±\frac{3}{2}x$B.$y=±\frac{2}{3}x$C.$y=±\frac{{\sqrt{13}}}{3}x$D.$y=±\frac{{\sqrt{13}}}{2}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一個焦點與拋物線x2=12y的焦點相同,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{5}}{5}$xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=$±\frac{\sqrt{5}}{2}$xD.y=$±\sqrt{5}$x

查看答案和解析>>

同步練習冊答案