【題目】如圖,菱形ABCD與等邊△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(1)證明:AD⊥PB;
求三棱錐C﹣PAB的高.
【答案】(1)見解析(2)
【解析】試題分析:(1)取AD中點(diǎn)O,由菱形性質(zhì)以及等腰三角形性質(zhì)得BO⊥AD,由等邊三角形性質(zhì)得OP⊥AD,再根據(jù)線面垂直判定定理得AD⊥平面POB,即得AD⊥PB.(2)利用等體積法求高: ,分別求底面面積,以及PO,代入錐體體積公式可得結(jié)果
試題解析:證明:(Ⅰ)取AD中點(diǎn)O,連結(jié)OP、OB、BD,
∵菱形ABCD與等邊△PAD所在的平面相互垂直,
AD=2,∠DAB=60°.
∴OP⊥AD,BO⊥AD,
∵OP∩BO=O,∴AD⊥平面POB,
∵PB平面POB,∴AD⊥PB.
解:(Ⅱ)∵菱形ABCD與等邊△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
∴BO=PO==,PB==,
∴=,
=.
設(shè)點(diǎn)C到平面PAB的距離為h,
∵
∴,
∴h===.
∴三棱錐C﹣PAB的高為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的兩個(gè)焦點(diǎn)和短軸的兩個(gè)頂點(diǎn)構(gòu)成的四邊形是一個(gè)正方形,且其周長為 .
(I)求橢圓C的方程;
(II)設(shè)過點(diǎn)B(0,m)(m>0)的直線 與橢圓C相交于E,F(xiàn)兩點(diǎn),點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為D,若點(diǎn)D總在以線段EF為直徑的圓內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),
(I)若,函數(shù)
①求函數(shù)的單調(diào)區(qū)間
②若函數(shù)的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍
(II)若存在實(shí)數(shù),使得,且,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列: , ,…, ()中()且對任意的
恒成立,則稱數(shù)列為“數(shù)列”.
(Ⅰ)若數(shù)列, , , 為“數(shù)列”,寫出所有可能的, ;
(Ⅱ)若“數(shù)列”: , ,…, 中, , ,求的最大值;
(Ⅲ)設(shè)為給定的偶數(shù),對所有可能的“數(shù)列”: , ,…, ,
記,其中表示, ,…, 這個(gè)數(shù)中最大的數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)是單調(diào)區(qū)間;
(2)如果關(guān)于x的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值集合;
(3)是否存在正數(shù)k,使得關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根?如果存在,求k滿足的條件;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某項(xiàng)運(yùn)動組委會為了搞好接待工作,招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運(yùn)動,其余人不喜愛運(yùn)動.得到下表:
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表, 問:能否在犯錯(cuò)誤的概率不超過0.10的前提下,認(rèn)為性別與喜愛運(yùn)動有關(guān)?并說明理由.
(2)如果從喜歡運(yùn)動的女志愿者中(其中恰有4人會外語)抽取2名,求抽出的志愿者中能勝任翻譯工作的人數(shù)的分布列及數(shù)學(xué)期望.
參考公式:
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)在處的切線與直線垂直時(shí),方程有兩相異實(shí)數(shù)根,求的取值范圍;
(2)若冪函數(shù)的圖象關(guān)于軸對稱,求使不等式在上恒成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAD底面ABCD, ;
(1)求證:平面PAB平面PCD;
(2)若過點(diǎn)B的直線垂直平面PCD,求證: //平面PAD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com