【題目】已知橢圓C: 的兩個(gè)焦點(diǎn)和短軸的兩個(gè)頂點(diǎn)構(gòu)成的四邊形是一個(gè)正方形,且其周長(zhǎng)為 .
(I)求橢圓C的方程;
(II)設(shè)過點(diǎn)B(0,m)(m>0)的直線 與橢圓C相交于E,F(xiàn)兩點(diǎn),點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為D,若點(diǎn)D總在以線段EF為直徑的圓內(nèi),求m的取值范圍.
【答案】解:(I)由題意,得: 又因?yàn)?
解得 ,所以橢圓C的方程為 .
(II)當(dāng)直線 的斜率不存在時(shí),由題意知 的方程為x=0,
此時(shí)E,F(xiàn)為橢圓的上下頂點(diǎn),且 ,
因?yàn)辄c(diǎn) 總在以線段 為直徑的圓內(nèi),且 ,
所以 ,故點(diǎn)B在橢圓內(nèi).
當(dāng)直線 的斜率存在時(shí),設(shè) 的方程為 .
由方程組 得 ,
因?yàn)辄c(diǎn)B在橢圓內(nèi),
所以直線 與橢圓C有兩個(gè)公共點(diǎn),即 .
設(shè) ,則 .
設(shè)EF的中點(diǎn) ,則 ,
所以 .所以 ,
,
因?yàn)辄c(diǎn)D總在以線段EF為直徑的圓內(nèi),所以 對(duì)于 恒成立.
所以 .
化簡(jiǎn),得 ,整理,得 ,
而 (當(dāng)且僅當(dāng)k=0時(shí)等號(hào)成立)所以 ,
由m>0,得 .綜上,m的取值范圍是 .
【解析】(1)由條件列出關(guān)于a,b,c的方程組求a,b,c得到橢圓的方程;
(2)先討論直線的存在時(shí),由點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為D總在以線段EF為直徑的圓內(nèi),求出m的范圍;再討論當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,代入到橢圓方程中,消去y得到關(guān)于x的一元二次方程,由韋達(dá)定理求出EF的中點(diǎn)坐標(biāo),當(dāng)點(diǎn)D在以EF為直徑的圓內(nèi)時(shí),由圓的性質(zhì)得到關(guān)于m與k的不等式,求m的范圍.
【考點(diǎn)精析】通過靈活運(yùn)用點(diǎn)與圓的位置關(guān)系和橢圓的標(biāo)準(zhǔn)方程,掌握點(diǎn)與圓的位置關(guān)系有三種:若,則點(diǎn)在圓外;點(diǎn)在圓上;點(diǎn)在圓內(nèi);橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( )在同一半周期內(nèi)的圖象過點(diǎn) , , ,其中 為坐標(biāo)原點(diǎn), 為函數(shù) 圖象的最高點(diǎn), 為函數(shù) 的圖象與 軸的正半軸的交點(diǎn), 為等腰直角三角形.
(1)求 的值;
(2)將 繞原點(diǎn) 按逆時(shí)針方向旋轉(zhuǎn)角 ,得到 ,若點(diǎn) 恰好落在曲線 ( )上(如圖所示),試判斷點(diǎn) 是否也落在曲線 ( )上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( )
A.k<14?
B.k<15?
C.k<16?
D.k<17?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)若 為 的極值點(diǎn),求 的值;
(Ⅱ)若 在 單調(diào)遞增,求 的取值范圍.
(Ⅲ)當(dāng) 時(shí),方程 有實(shí)數(shù)根,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①已知 ,“ 且 ”是“ ”的充分條件;
②已知平面向量 , 是“ ”的必要不充分條件;
③已知 ,“ ”是“ ”的充分不必要條件;
④命題 “ ,使 且 ”的否定為 “ ,都有 且 ”.其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),分別求函數(shù)的最小值和的最大值,并證明當(dāng)時(shí), 成立;
(3)令,當(dāng)時(shí),判斷函數(shù)有幾個(gè)不同的零點(diǎn)并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在圓: 上,而為在軸上的投影,且點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上兩點(diǎn),且, 為坐標(biāo)原點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)當(dāng),不等式恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD與等邊△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(1)證明:AD⊥PB;
求三棱錐C﹣PAB的高.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com