15.設(shè)集合A={x|x2-x-2=0},B={-2,0,2},則A∩B=( 。
A.ϕB.{2}C.{0}D.{-2}

分析 求出A中方程的解確定出A,找出A與B的交集即可.

解答 解:由A中方程變形得:(x-2)(x+1)=0,
解得:x=-1或x=2,即A={-1,2},
∵B={-2,0,2},
∴A∩B={2},
故選:B.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=lnx 圖象與函數(shù)$g(x)=2\sqrt{x}$圖象在交點(diǎn)處切線方程相同,則m的值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=f(x)是單調(diào)遞增函數(shù),其反函數(shù)是y=f-1(x).
(1)若y=x2-1(x>$\frac{1}{2}$),求y=f-1(x)并寫出定義域M;
(2)對于(1)的y=f-1(x)和M,設(shè)任意x1∈M,x2∈M,x1≠x2,求證:|f-1(x1)-f-1(x2)|<|x1-x2|;
(3)求證:若y=f(x)和y=f-1(x)有交點(diǎn),那么交點(diǎn)一定在y=x上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{3}=1$($a>\sqrt{3}$)上一動點(diǎn) P到其兩焦點(diǎn)F1,F(xiàn)2的距離之和為4,則實(shí)數(shù)a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)f(x)=ax3+2bx2-4x在x=-2與$x=\frac{2}{3}$處取得極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知定點(diǎn)A(2,0),圓x2+y2=1上有一個動點(diǎn)Q,若AQ的中點(diǎn)為P.
(1)求動點(diǎn)P的軌跡方程;
(2)設(shè)P的軌跡為曲線C,過點(diǎn)$B(\frac{1}{2},\frac{1}{2})$作曲線C的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.正方體ABCD-A′B′C′D′棱長為1
(1)證明:面A′BD∥面B′CD′
(2)求點(diǎn)B′到面A′BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\overrightarrow{a}$=(2cosx,1),向量$\overrightarrow$=(cosx,$\sqrt{3}$sin 2x),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,x∈R.
(I)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[$-\frac{π}{6}$,$\frac{π}{3}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2cos4x+2sin2x•cos2x+2$\sqrt{3}$sinx•cosx-1,x∈R.
(I)求函數(shù)f(x)的最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(π-$\frac{A}{2}$)=-1,a=2,求BC邊上的高的最大值.

查看答案和解析>>

同步練習(xí)冊答案