稱滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若數(shù)列的通項(xiàng)公式是,
試判斷數(shù)列是否為2014階“期待數(shù)列”,并說明理由;
(2)若等比數(shù)列為階“期待數(shù)列”,求公比q及的通項(xiàng)公式;
(3)若一個(gè)等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(1)是;
(2).或;
(3);
解析試題分析:(1)判斷數(shù)列是不是為2014階“期待數(shù)列”,就是根據(jù)定義計(jì)算,,是不是一個(gè)為0,一個(gè)為1,如是則是“期待數(shù)列”,否則就不是;(2)數(shù)列中等比數(shù)列,因此是其前和,故利用前前項(xiàng)和公式,分和進(jìn)行討論,可很快求出,或;(3)階等差數(shù)列是遞增數(shù)列,即公差,其和為0,故易知數(shù)列前面的項(xiàng)為負(fù),后面的項(xiàng)為正,即前項(xiàng)為正,后項(xiàng)為正,因此有,,這兩式用基本量或直接相減可求得,,因此通項(xiàng)公式可得.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/5/9avgm.png" style="vertical-align:middle;" />, 2分
所以
,
所以數(shù)列為2014階“期待數(shù)列” 4分
(2)①若,由①得,,得,矛盾. 5分
若,則由①=0,得, 7分
由②得或.
所以,.?dāng)?shù)列的通項(xiàng)公式是
或 9分
(3)設(shè)等差數(shù)列的公差為,>0.
∵,∴,∴,
∵>0,由得,, 11分
由①、②得,, 13分
兩式相減得,, ∴,
又,得,
∴數(shù)列的通項(xiàng)公式是. 16分
考點(diǎn):(1)三角函數(shù)的誘導(dǎo)公式與新定義的理解;(2)等比數(shù)列的前和公式與通項(xiàng)公式;(3)等差數(shù)列的前和公式與通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列{an}中,a2=32,a8=,an+1<an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相應(yīng)的n值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*,p與q垂直,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{an·bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)是否存在常數(shù)a>0且a≠1,使得數(shù)列{an-logabn}(n∈N*)是常數(shù)列?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和滿足,又,.
(1)求實(shí)數(shù)k的值;
(2)求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實(shí)數(shù)的最大整數(shù)(如),記,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為.
(Ⅰ)若,求;
(Ⅱ)若對(duì)于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:()的充分必要條件為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,若函數(shù),在點(diǎn)處切線過點(diǎn)
(1)求證:數(shù)列為等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等比數(shù)列;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等比數(shù)列{}的前項(xiàng)和為,已知對(duì)任意的,點(diǎn),均在函數(shù)的圖像上.
(Ⅰ)求的值;
(Ⅱ)記求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com