設(shè)等比數(shù)列{}的前項(xiàng)和為,已知對(duì)任意的,點(diǎn),均在函數(shù)的圖像上.
(Ⅰ)求的值;
(Ⅱ)記求數(shù)列的前項(xiàng)和.
(Ⅰ),(Ⅱ).
解析試題分析:(Ⅰ)利用數(shù)列前n項(xiàng)和求通項(xiàng)得到,利用計(jì)算得到;
(Ⅱ)利用對(duì)數(shù)運(yùn)算性質(zhì)得到;進(jìn)而得到,再利用裂項(xiàng)相消法求其前n項(xiàng)和.
試題解析:(Ⅰ)依題 1分
當(dāng)時(shí), , 2分
當(dāng)時(shí), , 4分
又因?yàn)閧}為等比數(shù)列, 5分
所以. 6分
(Ⅰ)另解: 1分
當(dāng)時(shí), , 2分.
當(dāng)時(shí), , 4分
解得 6分
(Ⅱ)由(1) 7分
9分
所以 12分
考點(diǎn):數(shù)列利用前n項(xiàng)和求通項(xiàng),裂項(xiàng)相消法求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
稱滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若數(shù)列的通項(xiàng)公式是,
試判斷數(shù)列是否為2014階“期待數(shù)列”,并說(shuō)明理由;
(2)若等比數(shù)列為階“期待數(shù)列”,求公比q及的通項(xiàng)公式;
(3)若一個(gè)等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,
(1)求,;
(2)設(shè),證明:數(shù)列是等比數(shù)列;
(3)求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列滿足:記數(shù)列的前項(xiàng)和為,
(1)求數(shù)列的通項(xiàng)公式;
(2)求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,點(diǎn)在函數(shù)的圖像上,(其中)
(Ⅰ)求證數(shù)列是等比數(shù)列;
(Ⅱ)設(shè),求及數(shù)列的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且,.
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
(Ⅲ)若,,求不超過(guò)的最大的整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,
(1)求(2)試猜想的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的猜想。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com