已知函數(shù)f(x)=ax2+bx+1(a、b為實(shí)數(shù)),若f(-1)=0且函數(shù)f(x)的值域?yàn)閇0,+∞).
(I)求函數(shù)f(x)的解析式;
(II)設(shè)F(x)=xf(x),求曲線F(x)在x=1處的切線方程.

解:(1)∵f(-1)=0
∴a-b+1=0①
又函數(shù)f(x)的值域?yàn)閇0,+∞)
∴a>0
∵f(x)=ax2+bx+1=a
∴y
∴4a-b2=0②
由①②得:a=1,b=2
∴f(x)=x2+2x+1
(Ⅱ)∵F(x)=xf(x)
∴F(x)=3x2+4x+1
∴F(1)=8
又∵F(1)=4
∴曲線F(x)在x=1處的切線方程為y-4=8(x-1)即8x-y-4=0
分析:(1)根據(jù)f(-1)=0可得a-b+1=0①又函數(shù)f(x)的值域?yàn)閇0,+∞)可分析出a>0故可將f(x)=ax2+bx+1變形為f(x)=a故y所以4a-b2=0②,然后由①②即可求出a,b的值從而求出f(x).
(2)根據(jù)F(x)=xf(x)可求出F(x)的解析式再根據(jù)導(dǎo)數(shù)的幾何意義可得曲線F(x)在x=1處的切線方程的斜率為F(1)然后再根據(jù)點(diǎn)斜式寫出切線方程即可.
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)的幾何意義研究在某點(diǎn)處的切線方程,屬?碱},較難.解題的關(guān)鍵是根據(jù)導(dǎo)數(shù)的幾何意義得出F(1)即為曲線F(x)在x=1處的切線方程的斜率!
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案