【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過(guò)橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.

【答案】(1);(2)

【解析】試題分析:(Ⅰ)由題意求得a,b的值即可確定橢圓方程;

(Ⅱ)分類(lèi)討論,設(shè)直線l代入橢圓方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,可得|AB|,根據(jù)點(diǎn)到直線的距離公式可求出|CD|,再由四邊形的面積公式,化簡(jiǎn)整理,運(yùn)用不等式的性質(zhì),即可得到所求范圍

試題解析:

1)由題意知,則,

的標(biāo)準(zhǔn)方程為,從而橢圓的左焦點(diǎn)為,即,

所以,又,得

所以橢圓的方程為:.

(2)可知橢圓右焦點(diǎn)

(ⅰ)當(dāng)lx軸垂直時(shí),此時(shí)不存在,直線l:,直線

可得:,,四邊形面積為12.

(ⅱ)當(dāng)lx軸平行時(shí),此時(shí),直線,直線,

可得:,,四邊形面積為.

(iii)當(dāng)lx軸不垂直時(shí),設(shè)l的方程為 ,并設(shè),.

.

顯然,且.

所以.

過(guò)且與l垂直的直線,則圓心到的距離為

所以.

故四邊形面積:.

可得當(dāng)lx軸不垂直時(shí),四邊形面積的取值范圍為(12,).

綜上,四邊形面積的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,過(guò)點(diǎn)軸的垂線交橢圓于兩點(diǎn),.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)為橢圓短軸的上頂點(diǎn),直線不經(jīng)過(guò)點(diǎn)且與相交于兩點(diǎn),若直線與直線的斜率的和為,問(wèn):直線是否過(guò)定點(diǎn)?若是,求出這個(gè)定點(diǎn),否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)用(萬(wàn)元)有如下統(tǒng)計(jì)資料:

/

2

3

4

5

6

/萬(wàn)元

若由資料知, 對(duì)呈線性相關(guān)關(guān)系,試求:

1)回歸直線方程;

2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

參考公式:回歸直線方程: .其中

(注: )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是拋物線y2=﹣8x上一點(diǎn),設(shè)P到此拋物線準(zhǔn)線的距離是d1,到直線x+y﹣10=0的距離是d2,則dl+d2的最小值是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)函數(shù)性質(zhì)的學(xué)習(xí),我們知道:函數(shù)的圖象關(guān)于軸成軸對(duì)稱(chēng)圖形的充要條件是為偶函數(shù)”.

1)若為偶函數(shù),且當(dāng)時(shí),,求的解析式,并求不等式的解集;

2)某數(shù)學(xué)學(xué)習(xí)小組針對(duì)上述結(jié)論進(jìn)行探究,得到一個(gè)真命題:函數(shù)的圖象關(guān)于直線成軸對(duì)稱(chēng)圖形的充要條件是為偶函數(shù)”.若函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),且當(dāng)時(shí),.

i)求的解析式;

ii)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】右圖是一個(gè)幾何體的平面展開(kāi)圖,其中ABCD

正方形, E、F分別為PAPD的中點(diǎn),在此幾何體中,

給出下面四個(gè)結(jié)論:

直線BE與直線CF異面;直線BE與直線AF異面;

直線EF//平面PBC; 平面BCE平面PAD.

其中正確結(jié)論的個(gè)數(shù)是

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,則星期六安排一名男生、星期日安排一名女生的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)fx)=x≥0),gx)=的圖象可能是(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案