【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在上的最大值是,求的值;
(3)記,當(dāng)時,若對任意式,總有成立,試求的最大值.
【答案】(1)在上是增函數(shù);在上是減函數(shù)(2)(3)的最大值為
【解析】
(1)求得的定義域和導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.
(2)求得的導(dǎo)函數(shù),對分成,,三種情況,結(jié)合在區(qū)間上的單調(diào)性和最大值,求得的值.
(3)首先求得的的表達(dá)式,利用的導(dǎo)函數(shù)判斷出當(dāng)時,為減函數(shù),由此將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),在上為減函數(shù),由的導(dǎo)函數(shù)分離常數(shù),得到,結(jié)合基本不等式,求得的最大值.
(1)的定義域是,,
令,則(舍去),
當(dāng)時,,故在上是增函數(shù);
當(dāng)時,,故在上是減函數(shù).
(2)∵,則,
①當(dāng)時,在上是增函數(shù),
故在上的最大值為,顯然不合題意:
②若即時,,則在上是增函數(shù),
故在上的最大值為,不合超意,舍去;
③若即時,則在上是增函數(shù),在上是減函數(shù),
故在在上的最大值為,解得,符合,
綜合①②③得.
(3),則,
當(dāng)時,,故時,在上是減函數(shù),
不妨設(shè),則,
故等價于,
即,記,從而在上為減函數(shù),
由,得,故恒成立,
∵,又在上單調(diào)遞減
∴,∴,∴.
故時,的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司新發(fā)明了甲、乙兩種不同型號的手機,公司統(tǒng)計了消費者對這兩種型號手機的評分情況,作出如下的雷達(dá)圖,則下列說法不正確的是( )
A. 甲型號手機在外觀方面比較好.B. 甲、乙兩型號的系統(tǒng)評分相同.
C. 甲型號手機在性能方面比較好.D. 乙型號手機在拍照方面比較好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內(nèi)的射影在線段上,且, ,M在線段上,且.
(Ⅰ)證明: 平面;
(Ⅱ)在線段AD上確定一點F,使得平面平面PAB,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年9月15中秋節(jié)(農(nóng)歷八月十五)到來之際,某月餅銷售企業(yè)進(jìn)行了一項網(wǎng)上調(diào)查,得到如下數(shù)據(jù):
男 | 女 | 合計 | |
喜歡吃月餅人數(shù)(單位:萬人) | 50 | 40 | 90 |
不喜歡吃月餅人數(shù)(單位:萬人) | 30 | 20 | 50 |
合計 | 80 | 60 | 140 |
為了進(jìn)一步了解中秋節(jié)期間月餅的消費量,對參與調(diào)查的喜歡吃月餅的網(wǎng)友中秋節(jié)期間消費月餅的數(shù)量進(jìn)行了抽樣調(diào)查,得到如下數(shù)據(jù):
已知該月餅廠所在銷售范圍內(nèi)有30萬人,并且該廠每年的銷售份額約占市場總量的35%.
(1)試根據(jù)所給數(shù)據(jù)分析,能否有以上的把握認(rèn)為,喜歡吃月餅與性別有關(guān)?
參考公式與臨界值表:,
其中:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(2)若忽略不喜歡月餅者的消費量,請根據(jù)上述數(shù)據(jù)估計:該月餅廠恰好生產(chǎn)多少噸月餅恰好能滿足市場需求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月24日國家統(tǒng)計局在慶祝中華人民共和國成立70周年活動新聞中心舉辦新聞發(fā)布會指出,1952年~2018年,我國GDP查679.1億元躍升至90.03萬億元,實際增長174倍;人均GDP從119元提高到6.46萬元,實際增長70倍.全國各族人民,砥礪奮進(jìn),頑強拼搏,實現(xiàn)了經(jīng)濟社會的跨越式發(fā)展.如圖是全國2010年至2018年GDP總量(萬億元)的折線圖.注:年份代碼1~9分別對應(yīng)年份2010~2018.
(1)由折線圖看出,可用線性回歸模型擬合與年份代碼的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),并預(yù)測2021年全國GDP的總量.
附注:參考數(shù)據(jù):.
參考公式:相關(guān)系數(shù);
回歸方程中斜率和截距的最小二乘法估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:其中所有假命題的序號是_______.
①命題“,”的否定是“,;
②將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像;
③冪函數(shù)在上是減函數(shù),則實數(shù);
④函數(shù)有兩個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到定點和到直線的距離之比為,設(shè)動點的軌跡為曲線,過點作垂直于軸的直線與曲線相交于兩點,直線與曲線交于兩點,與相交于一點(交點位于線段上,且與不重合).
(1)求曲線的方程;
(2)當(dāng)直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應(yīng)的直線的方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,令
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com