14.命題P:?x∈R,x2<sinx的否定是( 。
A.?p:?x∈R,x2≥sinxB.?p:?x∈R,x2<sinxC.?p:?x∈R,x2≥sinxD.?p:?x∈R,x2≤sinx

分析 直接利用特稱(chēng)命題 否定是全稱(chēng)命題寫(xiě)出結(jié)果.

解答 解:因?yàn)樘胤Q(chēng)命題的否定是全稱(chēng)命題,所以,命題p:?x∈R,x2<sinx成立,則¬p是:?x∈R,x2≥sinx.
故選:A.

點(diǎn)評(píng) 本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的否定關(guān)系,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.$\frac{2sin20°+sin40°}{sin50°}$$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖所示,在△ABC中,點(diǎn)O是BC上的點(diǎn),過(guò)O的直線(xiàn)MN分別交直線(xiàn)AB,AC于不同的兩點(diǎn)M,N,若$\overrightarrow{AB}=2\overrightarrow{AM}$,$\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AN}$,$\overrightarrow{AO}=m\overrightarrow{AB}+n\overrightarrow{AC}$(m>0,n>0),則6m+2n的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$,c=log2$\frac{7}{9}$,則a,b,c的大小順序是a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.執(zhí)行如圖的程序框圖,若輸入M的值為1,則輸出S=( 。
A.20B.14C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x+1)=f(1-x),且x∈[0,1]時(shí),f(x)=$\sqrt{2x}$,則f(11.5)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將函數(shù)f(x)=2sin(x-$\frac{π}{3}$)-1的圖象向右平移$\frac{π}{3}$個(gè)單位,再把所有的點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一條對(duì)稱(chēng)軸為( 。
A.直線(xiàn)x=$\frac{π}{6}$B.直線(xiàn)x=$\frac{π}{12}$C.直線(xiàn)x=-$\frac{π}{6}$D.直線(xiàn)x=-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合M={x|x2-2x-3<0}和N={x|x>1}的關(guān)系如圖所示,則陰影部分所表示的集合為{x|1<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC是半徑為2的圓的內(nèi)接三角形,內(nèi)角A,B,C的對(duì)邊分別為a、b、c,且2acosA=ccosB+bcosC.
(Ⅰ)求A;
(Ⅱ)若b2+c2=18,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案