【題目】設(shè)函數(shù)(其中為實(shí)數(shù)).
(1)若,求零點(diǎn)的個(gè)數(shù);
(2)求證:若不是的極值點(diǎn),則無極值點(diǎn).
【答案】(1)有個(gè)零點(diǎn);(2)證明見解析.
【解析】
(1)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理判斷出函數(shù)在區(qū)間和上的零點(diǎn)個(gè)數(shù),由此可得出結(jié)論;
(2)分析出當(dāng)時(shí),是函數(shù)的極值點(diǎn),在時(shí),求得,可知函數(shù)在上單調(diào)遞增,令得,對(duì)與的大小進(jìn)行分類討論,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,由此可證得結(jié)論.
(1)由題意得,所以,
又,且,所以恒成立,從而函數(shù)在上單調(diào)遞增,
所以當(dāng)時(shí),;當(dāng)時(shí),.
則函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
因?yàn)?/span>,,函數(shù)在上單調(diào)遞減且圖象連續(xù)不斷,
所以函數(shù)在上恰有個(gè)零點(diǎn),
因?yàn)?/span>,,函數(shù)在上單調(diào)遞增且圖象連續(xù)不斷,
所以函數(shù)在上恰有個(gè)零點(diǎn),
綜上所述,當(dāng)時(shí),函數(shù)有個(gè)零點(diǎn);
(2)由(1)知,當(dāng)時(shí),函數(shù)在上單調(diào)遞增,
又,當(dāng)時(shí),;當(dāng)時(shí),.
所以,是函數(shù)的極小值點(diǎn).
同理當(dāng)時(shí),也是函數(shù)的極小值點(diǎn).
當(dāng)時(shí),由得,且在上單調(diào)遞增.
所以當(dāng)時(shí),;當(dāng)時(shí),,
從而函數(shù)在上單調(diào)遞減;在上單調(diào)遞增.
若,即,則當(dāng)時(shí),,當(dāng)時(shí),,則是函數(shù)的極值點(diǎn);
同理若,即,則也是函數(shù)的極值點(diǎn);
若,即,,則函數(shù)在上單調(diào)遞增,此時(shí)不是函數(shù)的極值點(diǎn).
綜上可知,若不是函數(shù)的極值點(diǎn),則,函數(shù)在上單調(diào)遞增,從而函數(shù)無極值點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列的公比為,前項(xiàng)和.
(1)求的取值范圍;
(2)設(shè),記的前項(xiàng)和為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9~12月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年9~12月同比增長(zhǎng)25%,該市2017年9~12月郵政快遞業(yè)務(wù)量柱形圖及2018年9~12月郵政快遞業(yè)務(wù)量結(jié)構(gòu)扇形圖如圖所示,根據(jù)統(tǒng)計(jì)圖,給出下列結(jié)論:
①2018年9~12月,該市郵政快遞業(yè)務(wù)量完成件數(shù)約1500萬件;
②2018年9~12月,該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年9~12月相比有所減少;
③2018年9~12月,該市郵政快遞國際及港澳臺(tái)業(yè)務(wù)量同比增長(zhǎng)超過75%,其中正確結(jié)論的個(gè)數(shù)為( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點(diǎn)做斜率為的直線,橢圓與直線交于兩點(diǎn),當(dāng)直線垂直于軸時(shí).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過作動(dòng)直線交橢圓于兩點(diǎn),為平面上一點(diǎn),直線的斜率分別為,且滿足,問點(diǎn)是否在某定直線上運(yùn)動(dòng),若存在,求出該直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果不是等差數(shù)列,但若,使得,那么稱為“局部等差”數(shù)列.已知數(shù)列的項(xiàng)數(shù)為4,記事件:集合,事件:為“局部等差”數(shù)列,則條件概率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)為橢圓的中線,點(diǎn),過點(diǎn)的動(dòng)直線交橢圓于另一點(diǎn),直線上的點(diǎn)滿足,求直線與的交點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.直線的參數(shù)方程為(為參數(shù)),圓的參數(shù)方程為(為參數(shù)).
(1)寫出直線的普通方程和圓的極坐標(biāo)方程;
(2)已知點(diǎn),直線與圓交于,兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com