15.函數(shù)$f(x)=\frac{3}{{{9^x}+3}}$
(1)求f(x)+f(1-x)的值.
(2)設(shè)$S=f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{2016}{2017})$,求S的值.

分析 (1)由函數(shù)$f(x)=\frac{3}{{{9^x}+3}}$,能求出f(x)+f(1-x)的值.
(2)由f(x)+f(1-x)=1,利用倒序相加法能求出S.

解答 (本小題滿分12分)
解:(1)∵函數(shù)$f(x)=\frac{3}{{{9^x}+3}}$,
∴$f(x)+f(1-x)=\frac{3}{{{9^x}+3}}+\frac{3}{{{9^{1-x}}+3}}=\frac{3}{{{9^x}+3}}+\frac{{3×{9^x}}}{{9+3×{9^x}}}=\frac{3}{{{9^x}+3}}+\frac{9^x}{{3+{9^x}}}=1$.
(2)∵f(x)+f(1-x)=1,
∴$S=f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{2016}{2017})$
S=f($\frac{2016}{2017}$)+f($\frac{2015}{2017}$)+$f(\frac{2014}{2017})$+…+f($\frac{1}{2017}$),
∴2S=[f($\frac{1}{2017}$)+f($\frac{2016}{2017}$)]+[f($\frac{2}{2017}$)+f($\frac{2015}{2017}$)]+…+[f($\frac{2016}{2017}$)+f($\frac{1}{2017}$)]
=2016×1=2016,
∴S=1008.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓O:x2+y2=r2,點P(a,b)(ab≠0)是圓O內(nèi)一點,直線l的方程為ax+by+r2=0,那么( 。
A.l與圓O相切B.l與圓O相離
C.l與圓O相交D.l與圓O相離或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=4x+ax2-$\frac{2}{3}$x3(x∈R)
(1)當a=1時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=-x2+2xtanθ+1,$x∈[-\sqrt{3},1]$,其中$θ∈(-\frac{π}{2},\frac{π}{2})$.
(1)當$θ=-\frac{π}{4}$時,求函數(shù)f(x)的最大值與最小值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間$[-\sqrt{3},1]$上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=x+sinπx-3,則$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{4033}{2017}})$的值為-8066.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+ax+b(a,b∈R)$在x=2處取得極小值$-\frac{4}{3}$.
(1)求f(x);
(2)若$\frac{1}{3}{x^3}+ax+b≤{m^2}+m+\frac{10}{3}$對x∈[-4,3]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.log2sin10°+log250°+log2sin70°的值為(  )
A.4B.-4C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)是定義在R上的偶函數(shù),f(2)=0,x>0時,$\frac{xf′(x)-f(x)}{{x}^{2}}$<0,則不等式xf(x)<0的解集(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知三棱錐A-BCD中,$AB=CD=\sqrt{2}$,$AC=BC=AD=BD=\sqrt{3}$,且各頂點均在同一個球面上,則該球的體積為( 。
A.$\frac{32π}{3}$B.C.D.$\frac{4π}{3}$

查看答案和解析>>

同步練習(xí)冊答案