如圖所示,矩形ABCD和梯形BEFC所在平面互相垂直,
BE∥CF,∠BCF=∠CEF=90°,AD=,EF=2.
(1)求證:AE∥平面DCF;
(2)當(dāng)AB的長(zhǎng)為何值時(shí),二面角A—EF—C的大小為60°?
(1)證明略 (2) 當(dāng)AB為時(shí),二面角A—EF—C的大小為60°
方法一 (1) 過(guò)點(diǎn)E作EG⊥CF交CF于G,

連接DG.可得四邊形BCGE為矩形,
又四邊形ABCD為矩形,
所以AD   EG,從而四邊形ADGE為平行四邊形,
故AE∥DG.
因?yàn)锳E平面DCF,DG平面DCF,
所以AE∥平面DCF.
(2) 過(guò)點(diǎn)B作BH⊥EF交FE的延長(zhǎng)線于H,連接AH.
由平面ABCD⊥平面BEFC,AB⊥BC,
得AB⊥平面BEFC,
從而AH⊥EF,所以∠AHB為二面角A—EF—C的平面角.
在Rt△EFG中,因?yàn)镋G=AD=,EF=2,
所以∠CFE=60°,FG=1,
又因?yàn)镃E⊥EF,所以CF=4,
從而B(niǎo)E=CG=3.
于是BH=BE·sin∠BEH=.
因?yàn)锳B=BH·tan∠AHB=×=,
所以當(dāng)AB為時(shí),二面角A—EF—C的大小為60°.
方法二 如圖所示,以點(diǎn)C為坐標(biāo)原點(diǎn),以CB、CF和CD所在直線分別作為x軸、y軸和z軸,建立空間直角坐標(biāo)系C—xyz.

設(shè)AB=a,BE=b,CF=c,
則C(0,0,0),A(,0,a),
B(,0,0),E(,b,0),F(xiàn)(0,c,0).
(1)=(0,b,-a),=(,0,0),=(0,b,0),
所以·=0,·=0,從而CB⊥AE,CB⊥BE.
AE∩BE=E,所以CB⊥平面ABE.
因?yàn)镃B⊥平面DCF,
所以平面ABE∥平面DCF,AE平面ABE.
故AE∥平面DCF.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125439041211.gif" style="vertical-align:middle;" />=(-,c-b,0),=(,b,0).
·=0,||=2,
所以 解得
所以E(,3,0),F(xiàn)(0,4,0).
設(shè)n=(1,y,z)與平面AEF垂直,
則n·=0,n·=0,解得n=(1,,).
又因?yàn)锽A⊥平面BEFC,=(0,0,a),
所以|cos〈n, 〉|=
解得a=.
所以當(dāng)AB為時(shí),二面角A—EF—C的大小為60°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方體中,、分別是棱、的中點(diǎn).
試畫(huà)出平面與平面的交線.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,P是邊長(zhǎng)為3的正方形ABCD所在平面外的一點(diǎn),PD⊥平面ABCD,O、E、F分別是AC、PA、PB的中點(diǎn).求證:平面EFO∥ 平面PDC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1),△BCD內(nèi)接于直角梯形A1A2A3D,已知沿△BCD三邊將△A1BD、△A2BC、△A3CD翻折上去,恰好形成一個(gè)三棱錐ABCD,如圖(2)所示.

(1)求證:在三棱錐ABCD中,ABCD;
(2)若直角梯形的上底A1D=10,高A1A2=8,求翻折后三棱錐的側(cè)面ACD與底面BCD所成二面角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,EPC的中點(diǎn).求證:PA∥平面EDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定線段AB所在的直線與定平面相交,P為直線AB外的一點(diǎn),且P不在內(nèi),若直線AP、BP與分別交于C、D點(diǎn),求證:不論P(yáng)在什么位置,直線CD必過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,E、F、G、H分別是空間四邊形AB、BC、CD、DA上的點(diǎn),且EH與FG相交于點(diǎn)O.求證:B、D、O三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P—ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點(diǎn).
(1)求證:PB⊥DM;
(2)求BD與平面ADMN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



如圖,四面體ABCD中,OBD的中點(diǎn),ΔABD和ΔBCD均為等邊三角形,
AB ="2" , AC =.  
(I)求證:平面BCD;                                  
(II)求二面角A-BC- D的大;                                                        
(III)求O點(diǎn)到平面ACD的距離.                                                      

查看答案和解析>>

同步練習(xí)冊(cè)答案