【題目】如圖,在邊長為4的正三角形中,E為邊的中點,過E作于D.把沿翻折至的位置,連結(jié).翻折過程中,其中正確的結(jié)論是( )
A.;
B.存在某個位置,使;
C.若,則的長是定值;
D.若,則四面體的體積最大值為
【答案】ACD
【解析】
根據(jù)線面垂直的性質(zhì)判斷A,B;取中點,可證明,從而可計算出,判斷C;折疊過程中,不動,當到平面的距離最大時,四面體的體積最大,從而計算出最大體積后判斷D.
由,,得平面,又平面,所以,A正確;
若存在某個位置,使,如圖,連接,因為,所以,
連接,正中,,,所以平面,而平面,所以,由選項A的判斷有,且,平面,平面,所以平面,又平面,所以,則,這是不可能的,事實上,B錯;
設(shè)是中點,連接,則,所以,從而,是中點,所以,若,即,所以,所以,且由得,所以,
邊長為4,則,,,為定值,C正確;
折疊過程中,不變,不動,當到平面的距離最大時,四面體的體積最大,由選項的判斷知當平面時,到平面的距離最大且為,又,所以此最大值為,D正確.
故選:ACD.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinθ=2.
(1)M為曲線C1上的動點,點P在線段OM上,且滿足,求點P的軌跡C2的直角坐標方程;
(2)曲線C2上兩點與點B(ρ2,α),求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),直線,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求直線l和曲線C的極坐標方程;
(2)若直線與直線l相交于點A,與曲線C相交于不同的兩點M,N.求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個正方體的平面展開圖如圖所示,在這個正方體中,點是棱的中點,,分別是線段,(不包含端點)上的動點,則下列說法正確的是( )
A.在點的運動過程中,存在
B.在點的運動過程中,存在
C.三棱錐的體積為定值
D.三棱錐的體積不為定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(R).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若對任意實數(shù),當時,函數(shù)的最大值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個頂點為,右焦點為,且,其中為原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點滿足,點在橢圓上(異于橢圓的頂點),直線與以為圓心的圓相切于點,且為線段的中點.求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程是(為參數(shù)),以原點為極點,以軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)過原點的直線與直線交于點,與曲線交于、兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點.
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大;
(Ⅲ)線段上是否存在點,使得直線與平面所成角為,若存在,求線段的長度;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com