【題目】已知橢圓的一個(gè)頂點(diǎn)為,右焦點(diǎn)為,且,其中為原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn)滿足,點(diǎn)在橢圓上(異于橢圓的頂點(diǎn)),直線與以為圓心的圓相切于點(diǎn),且為線段的中點(diǎn).求直線的方程.

【答案】;(,或

【解析】

(Ⅰ)根據(jù)題意,并借助,即可求出橢圓的方程;

(Ⅱ)利用直線與圓相切,得到,設(shè)出直線的方程,并與橢圓方程聯(lián)立,求出點(diǎn)坐標(biāo),進(jìn)而求出點(diǎn)坐標(biāo),再根據(jù),求出直線的斜率,從而得解.

(Ⅰ)橢圓的一個(gè)頂點(diǎn)為,

,

,得,

又由,得,

所以,橢圓的方程為;

(Ⅱ)直線與以為圓心的圓相切于點(diǎn),所以,

根據(jù)題意可知,直線和直線的斜率均存在,

設(shè)直線的斜率為,則直線的方程為,即,

,消去,可得,解得.

代入,得

所以,點(diǎn)的坐標(biāo)為

因?yàn)?/span>為線段的中點(diǎn),點(diǎn)的坐標(biāo)為

所以點(diǎn)的坐標(biāo)為,

,得點(diǎn)的坐標(biāo)為,

所以,直線的斜率為,

又因?yàn)?/span>,所以,

整理得,解得.

所以,直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設(shè)數(shù)列的前項(xiàng)和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3世紀(jì)中期,我國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出了割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”.這可視為中國(guó)古代極限觀念的佳作.割圓術(shù)可以視為將一個(gè)圓內(nèi)接正邊形等分成個(gè)等腰三角形(如圖所示),當(dāng)變得很大時(shí),等腰三角形的面積之和近似等于圓的面積.運(yùn)用割圓術(shù)的思想,可得到sin3°的近似值為( (取近似值3.14)

A.0.012B.0.052

C.0.125D.0.235

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正三角形中,E為邊的中點(diǎn),過(guò)ED.沿翻折至的位置,連結(jié).翻折過(guò)程中,其中正確的結(jié)論是(

A.

B.存在某個(gè)位置,使

C.,則的長(zhǎng)是定值;

D.,則四面體的體積最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,分別是,中點(diǎn),為線段上的一個(gè)動(dòng)點(diǎn).

1)證明:平面;

2)當(dāng)二面角的余弦值為時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的函數(shù)在區(qū)間D上恒有

1)若,求h(x)的表達(dá)式;

2)若,求k的取值范圍;

3)若求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)PM2.5(單位:)表示每立方米空氣中可入肺顆粒物的含量,這個(gè)值越高,就代表空氣污染越嚴(yán)重:

PM2.5

日均濃度

0~35

35~75

75~115

115~150

150~250

空氣質(zhì)量級(jí)別

一級(jí)

二級(jí)

三級(jí)

四級(jí)

五級(jí)

六級(jí)

空氣質(zhì)量類型

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

甲乙兩城市20205月份中的15天對(duì)空氣質(zhì)量指數(shù)PM2.5進(jìn)行監(jiān)測(cè),獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:

1)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí)估計(jì)甲乙兩城市15天內(nèi)哪個(gè)城市空氣質(zhì)量總體較好?并簡(jiǎn)要說(shuō)明理由.

2)在15天內(nèi)任取1天,估計(jì)甲乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;

3)在乙城市15個(gè)監(jiān)測(cè)數(shù)據(jù)中任取2個(gè),設(shè)為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù))的部分圖象如圖所示,則下列結(jié)論正確的是(

A.

B.若把函數(shù)的圖像向左平移個(gè)單位,則所得函數(shù)是奇函數(shù)

C.若把的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變,得到的函數(shù)在上是增函數(shù)

D.,若恒成立,則的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案