【題目】某公司按現(xiàn)有能力,每月收入為70萬元,公司分析部門測算,若不進(jìn)行改革,入世后因競爭加劇收入將逐月減少.分析測算得入世第一個月收入將減少3萬元,以后逐月多減少2萬元,如果進(jìn)行改革,即投入技術(shù)改造300萬元,且入世后每月再投入1萬元進(jìn)行員工培訓(xùn),則測算得自入世后第一個月起累計收入與時間(以月為單位)的關(guān)系為,且入世第一個月時收入將為90萬元,第二個月時累計收入為170萬元,問入世后經(jīng)過幾個月,該公司改革后的累計純收入高于不改革時的累計純收入.

【答案】13.

【解析】

入世改革后經(jīng)過個月的純收入為萬元,不改革時的純收入為

,再由題設(shè)可知,由題意建立不等式

,由此可得答案

入世改革后經(jīng)過n個月的純收入為萬元

不改革時的純收入為

,則

由題意建立不等式

故取

答:經(jīng)過13個月改革后的累計純收入高于不改革時的累計純收入.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , Sn=2an﹣1,{bn}是等差數(shù)列,且b1=a1 , b4=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若 ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D為三角形ABC邊BC上一點(diǎn), =3 ,En(n∈N*)為AC邊上的一列點(diǎn),滿足 = an+1 ﹣(3an+2) ,其中實(shí)數(shù)列{an}中,an>0,a1=1,則{an}的通項公式為(
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,若對任意,存在,使得 成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)f(x)=cos2 x﹣ )的圖象向左平移 個單位后得到的函數(shù)為g(x),則以下結(jié)論中正確的是(
A.g( )>g( )>0
B.g( ??
C.g( )>g( )>0
D.g( )=g( )>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在50和350之間所有末位數(shù)是1的整數(shù)之和是( )

A. 5880 B. 5539 C. 5208 D. 4877

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線 是平面內(nèi)到定點(diǎn) 的距離與到定直線 的距離之和為 的動點(diǎn) 的軌跡.則曲線 軸交點(diǎn)的坐標(biāo)是________________;又已知點(diǎn) 為常數(shù)),那么 的最小值 ________________

查看答案和解析>>

同步練習(xí)冊答案