【題目】某公司按現(xiàn)有能力,每月收入為70萬元,公司分析部門測算,若不進行改革,入世后因競爭加劇收入將逐月減少.分析測算得入世第一個月收入將減少3萬元,以后逐月多減少2萬元,如果進行改革,即投入技術改造300萬元,且入世后每月再投入1萬元進行員工培訓,則測算得自入世后第一個月起累計收入與時間
(以月為單位)的關系為
,且入世第一個月時收入將為90萬元,第二個月時累計收入為170萬元,問入世后經過幾個月,該公司改革后的累計純收入高于不改革時的累計純收入.
科目:高中數學 來源: 題型:
【題目】已知某公司為鄭州園博園生產某特許商品,該公司年固定成本為10萬元,每生產千件需另投入2 .7萬元,設該公司年內共生產該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數解析式;
〔II〕年產量為多少千件時,該公司在該特許商品的生產中所獲年利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , Sn=2an﹣1,{bn}是等差數列,且b1=a1 , b4=a3 .
(1)求數列{an}和{bn}的通項公式;
(2)若 ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為
,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點D為三角形ABC邊BC上一點, =3
,En(n∈N*)為AC邊上的一列點,滿足
=
an+1
﹣(3an+2)
,其中實數列{an}中,an>0,a1=1,則{an}的通項公式為( )
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把函數f(x)=cos2( x﹣
)的圖象向左平移
個單位后得到的函數為g(x),則以下結論中正確的是( )
A.g( )>g(
)>0
B.g( )
??
C.g( )>g(
)>0
D.g( )=g(
)>0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線 是平面內到定點
的距離與到定直線
的距離之和為
的動點
的軌跡.則曲線
與
軸交點的坐標是________________;又已知點
(
為常數),那么
的最小值
________________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com