【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望

【答案】1;

2的分布列為











【解析】

試題分析:(1)利用條件概率公式,即可求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)確定的可能取值,利用概率公式即可得到總分的分布列,代入期望公式即可.

試題解析:(1)記該考生在第一次抽到理科題為事件,該考生第二次和第三次均抽到文科題為事件,則

該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率為

2的可能取值為:0,1020,30,

,

,

的分布列為











的數(shù)學(xué)期望為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正數(shù)數(shù)列的前項(xiàng)和為,且滿(mǎn)足;在數(shù)列中,

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為. 若對(duì)任意,存在實(shí)數(shù),使恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線(xiàn),試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的反函數(shù)為,則函數(shù)的圖象可能是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開(kāi)帷幕.為了了解喜愛(ài)足球運(yùn)動(dòng)是否與性別有關(guān),某體育臺(tái)隨機(jī)抽取100名觀(guān)眾進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表.

(1)將列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜愛(ài)足球運(yùn)動(dòng)與性別有關(guān)?

(2)在不喜愛(ài)足球運(yùn)動(dòng)的觀(guān)眾中,按性別分別用分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人參加一臺(tái)訪(fǎng)談節(jié)目,求這2人至少有一位男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

需要

40

30

不需要

160

270

(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。

(2)能否在犯錯(cuò)誤的概率不超過(guò)百分之一的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司按現(xiàn)有能力,每月收入為70萬(wàn)元,公司分析部門(mén)測(cè)算,若不進(jìn)行改革,入世后因競(jìng)爭(zhēng)加劇收入將逐月減少.分析測(cè)算得入世第一個(gè)月收入將減少3萬(wàn)元,以后逐月多減少2萬(wàn)元,如果進(jìn)行改革,即投入技術(shù)改造300萬(wàn)元,且入世后每月再投入1萬(wàn)元進(jìn)行員工培訓(xùn),則測(cè)算得自入世后第一個(gè)月起累計(jì)收入與時(shí)間(以月為單位)的關(guān)系為,且入世第一個(gè)月時(shí)收入將為90萬(wàn)元,第二個(gè)月時(shí)累計(jì)收入為170萬(wàn)元,問(wèn)入世后經(jīng)過(guò)幾個(gè)月,該公司改革后的累計(jì)純收入高于不改革時(shí)的累計(jì)純收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一(1)(2)兩個(gè)班聯(lián)合開(kāi)展“詩(shī)詞大會(huì)進(jìn)校園,國(guó)學(xué)經(jīng)典潤(rùn)心田”古詩(shī)詞競(jìng)賽主題班會(huì)活動(dòng),主持人從這兩個(gè)班分別隨機(jī)選出20名同學(xué)進(jìn)行當(dāng)場(chǎng)測(cè)試,他們的測(cè)試成績(jī)按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計(jì)如圖(單位:分):
高一(2)班20名學(xué)生成績(jī)莖葉圖:

4

5

5

2

6

4 5 6 8

7

0 5 5 8 8 8 8 9

8

0 0 5 5

9

4 5

(Ⅰ)分別計(jì)算兩個(gè)班這20名同學(xué)的測(cè)試成績(jī)?cè)赱80,90)的頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)分別從兩個(gè)班隨機(jī)選取1人,設(shè)這兩人中成績(jī)?cè)赱80,90)的人數(shù)為X,求X的分布列(頻率當(dāng)作概率使用).
(Ⅲ)運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)分析比較兩個(gè)班學(xué)生的古詩(shī)詞水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年入冬以來(lái),各地霧霾天氣頻發(fā),頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車(chē)更是出臺(tái)了各類(lèi)限行措施,為分析研究車(chē)流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車(chē)流量與的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車(chē)流量(萬(wàn)輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫(huà)出散點(diǎn)圖;

(2)試判斷是否具有線(xiàn)性關(guān)系,若有請(qǐng)求出關(guān)于的線(xiàn)性回歸方程,若沒(méi)有,請(qǐng)說(shuō)明理由;

(3)若周六同一時(shí)間段的車(chē)流量為60萬(wàn)輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).

參考公式: .

查看答案和解析>>

同步練習(xí)冊(cè)答案