【題目】已知中,內(nèi)角、、的對(duì)邊為、、,三角形外接圓的半徑,證明:
(1);
(2).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)采用坐標(biāo)法證明,方法是以為原點(diǎn),所在的直線為軸建立平面直角坐標(biāo)系,表示出點(diǎn)和點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式表示出,化簡(jiǎn)后即得到;
(2)作出三角形的外接圓,分角為銳角、直角、鈍角三種情況討論,構(gòu)造直角三角形,利用同弧所對(duì)的圓周角相等結(jié)合銳角三角函數(shù)的定義以及誘導(dǎo)公式證明出,同理可證明出,進(jìn)而得出結(jié)論.
(1)已知中,內(nèi)角、、的對(duì)邊為、、,
以為原點(diǎn),所在直線為軸建立直角坐標(biāo)系,
則,,
則,故得證;
(2)在中,設(shè),,.
若為銳角,如下圖所示,過(guò)點(diǎn)作的垂線交的外接圓于點(diǎn),連接,則,
由同弧所對(duì)的圓周角相等可得,
由銳角三角函數(shù)的定義可得,,;
若為直角,則,,此時(shí)成立;
若為鈍角,如下圖所示:
過(guò)點(diǎn)作的垂線交的外接圓于點(diǎn),連接,則,且,
由銳角三角函數(shù)的定義可得,,
.
同理可證明出,因此,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)消防意識(shí),某部門從男,女職工中各隨機(jī)抽取了20人參加消防知識(shí)測(cè)試(滿分為100分),這40名職工測(cè)試成績(jī)的莖葉圖如下圖所示
(1)根據(jù)莖葉圖判斷男職工和女職工中,哪類職工的測(cè)試成績(jī)更好?并說(shuō)明理由;
(2)(ⅰ)求這40名職工成績(jī)的中位數(shù),并填寫(xiě)下面列聯(lián)表:
超過(guò)的人數(shù) | 不超過(guò)的人數(shù) | |
男職工 | ||
女職工 |
(ⅱ)如果規(guī)定職工成績(jī)不少于m定為優(yōu)秀,根據(jù)(ⅰ)中的列聯(lián)表,能否有99%的把握認(rèn)為消防知識(shí)是否優(yōu)秀與性別有關(guān)?
附:.
P() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓E:()的長(zhǎng)軸長(zhǎng)為4,左準(zhǔn)線l的方程為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線過(guò)橢圓E的左焦點(diǎn),且與橢圓E交于A,B兩點(diǎn).
①若,求直線的方程;
②過(guò)A作左準(zhǔn)線l的垂線,垂足為,點(diǎn),求證:,B,G三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌汽車4S店,對(duì)該品牌旗下的A型、B型、C型汽車進(jìn)行維修保養(yǎng),汽車4S店記錄了100輛該品牌三種類型汽車的維修情況,整理得下表:
車型 | A型 | B型 | C型 |
頻數(shù) | 20 | 40 | 40 |
假設(shè)該店采用分層抽樣的方法從上述維修的100輛該品牌三種類型汽車中隨機(jī)取10輛進(jìn)行問(wèn)卷回訪.
(1)求A型、B型、C型各車型汽車抽取的數(shù)目;
(2)維修結(jié)束后這100輛汽車的司機(jī)采用“100分制”打分的方式表示對(duì)4S店的滿意度,按照大于等于80為優(yōu)秀,小于80為合格,得到如下列聯(lián)表:
優(yōu)秀 | 合格 | 合計(jì) | |
男司機(jī) | 10 | 38 | 48 |
女司機(jī) | 25 | 27 | 52 |
合計(jì) | 35 | 65 | 100 |
問(wèn)能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為司機(jī)對(duì)4S店滿意度與性別有關(guān)系?請(qǐng)說(shuō)明原因.
(參考公式:)
附表:
0.100 | 0.050 | 0.010 | 0.001 | |
K | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)多年的運(yùn)作,“雙十一”搶購(gòu)活動(dòng)已經(jīng)演變成為整個(gè)電商行業(yè)的大型集體促銷盛宴.為迎接2014年“雙十一”網(wǎng)購(gòu)狂歡節(jié),某廠家擬投入適當(dāng)?shù)膹V告費(fèi),對(duì)網(wǎng)上所售產(chǎn)品進(jìn)行促銷.經(jīng)調(diào)查測(cè)算,該促銷產(chǎn)品在“雙十一”的銷售量p萬(wàn)件與促銷費(fèi)用x萬(wàn)元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為
元/件,假定廠家的生產(chǎn)能力完全能滿足市場(chǎng)的銷售需求.
(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問(wèn)題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓。ê(jiǎn)稱為弧田的弧)和以圓弧的端點(diǎn)為端點(diǎn)的線段(簡(jiǎn)稱 (弧田的弦)圍成的平面圖形,公式中“弦”指的是弧田的弦長(zhǎng),“矢”等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長(zhǎng)等于,其弧所在圓為圓,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求曲線與的交點(diǎn)坐標(biāo);
(2)過(guò)曲線上任一點(diǎn)作與夾角為30°的直線,交于點(diǎn),且的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),a∈R),以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ
(1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)若直線l過(guò)點(diǎn)P(1,1)且與曲線C交于AB兩點(diǎn),求|PA|+|PB|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com