12.某工廠對某產(chǎn)品的產(chǎn)量與單位成本的資料分析后有如表數(shù)據(jù):
月     份123456
產(chǎn)量x千件234345
單位成本y元/件737271736968
(1)畫出散點(diǎn)圖,并判斷產(chǎn)量與單位成本是否線性相關(guān).
(2)求單位成本y與月產(chǎn)量x之間的線性回歸方程.(其中結(jié)果保留兩位小數(shù))
參考公式:
用最小二乘法求線性回歸方程系數(shù)公式:$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{{{\sum_{i=1}^n{x_1^2-n\overline x}}^2}}}$,$\widehata$=$\overline y$-$\widehatb\overline$x.

分析 (1)根據(jù)所給的六組數(shù)據(jù)寫出六個有序數(shù)對,在平面直角坐標(biāo)系上點(diǎn)出對應(yīng)的點(diǎn),得到散點(diǎn)圖,觀察散點(diǎn)圖呈帶狀分布,知產(chǎn)量與單位成本是線性相關(guān).
(2)做出橫標(biāo)和縱標(biāo)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),求出利用最小二乘法所需要的數(shù)據(jù),代入關(guān)于b的公式,求出線性回歸方程的系數(shù),再求出a的值,得到方程.

解答 解:(1)根據(jù)所給的六組數(shù)據(jù)寫出六個有序數(shù)對,在平面直角坐標(biāo)系上點(diǎn)出對應(yīng)的點(diǎn),得到散點(diǎn)圖,
觀察散點(diǎn)圖呈帶狀分布,知產(chǎn)量與單位成本是線性相關(guān)

(2)x1y1+x2y2+…+x6y6=1481,

$\overline x=\frac{21}{6},\overline y=71,\sum_{i=1}^6{x_i^2}=79,\sum_{i=1}^6{{x_i}{y_i}}=1481$,
代入公式得:$\widehat$=$\frac{1481-6×\frac{21}{6}×71}{79-6{×(\frac{21}{6})}^{2}}$≈-1.82,
$\widehat{a}$=71-(-1.82)×$\frac{21}{6}$≈77.37,
故線性回歸方程為:$\hat{y}$=77.37-1.82x.

點(diǎn)評 本題考查線性回歸方程的求解,本題解題的關(guān)鍵是正確求解線性回歸方程的系數(shù),這里的運(yùn)算比較麻煩,容易出錯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.9粒種子分種在3個坑中,每坑3粒,每粒種子發(fā)芽的概率為0.5.若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑內(nèi)不需要補(bǔ)種;若一個坑內(nèi)的種子都沒發(fā)芽,則這個坑需要補(bǔ)種.
(1)求單個坑不需要補(bǔ)種的概率;
(2)用ξ表示需要補(bǔ)種的坑數(shù),求ξ的分布列;
(3)假定每個坑至多補(bǔ)種一次,每補(bǔ)種1個坑需10元,用X表示補(bǔ)種的費(fèi)用,求X的期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊經(jīng)過點(diǎn)(-3,4),則sin2α的值為(  )
A.-$\frac{7}{25}$B.-$\frac{18}{25}$C.-$\frac{12}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.f(x)=ln(x+$\sqrt{{x^2}+1}}$),若實(shí)數(shù)a,b滿足f(a)+f(b-1)=0,則a+b為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{5}^{x},x≥0}\\{f(-x),x<0}\end{array}$,則f(log5$\frac{1}{3}$)的值等于(  )
A.3B.$\frac{1}{3}$C.$\frac{1}{8}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)用“五點(diǎn)法”畫函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}}$)在某一個周期內(nèi)的圖象時,列表如下:
x$\frac{2}{3}$πx1$\frac{8}{3}$πx2x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-20
(1)求函數(shù)f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,且函數(shù)y=f(x)•g(x)在區(qū)間(0,m)上是單調(diào)函數(shù),求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列結(jié)論正確的是(  )
A.命題p:?x>0,都有x2>0,則?p:?x0≤0,使得x02≤0
B.若命題p和p∨q都是真命題,則命題q也是真命題
C.在△ABC中,a,b,c是角A,B,C的對邊,則a<b的充要條件是cosA>cosB
D.命題“若x2+x-2=0,則x=-2或x=1”的逆否命題是“x≠-2或x≠1,則x2+x-2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在正方體ABCD-A1B1C1D1中,棱長AB=2,M,N,P分別是C1C,BC1,C1D1的中點(diǎn).
(1)直線A1C1交PN于點(diǎn)E,直線AC1交平面MNP于點(diǎn)F,求證:M,E,F(xiàn)三點(diǎn)共線.
(2)求三棱錐D-MNP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線y2=ax的準(zhǔn)線方程是x=-1,焦點(diǎn)為F.
(1)求a的值;
(2)過點(diǎn)F作直線交拋物線于A(x,y),B(x,y)兩點(diǎn),若x+x=6,求弦長AB.

查看答案和解析>>

同步練習(xí)冊答案