【題目】 在正方體ABCDA1B1C1D1中,若F,G分別是棱AB,CC1的中點,則直線FG與平面A1ACC1所成角的正弦值等于(  )

A.B.

C.D.

【答案】D

【解析】

FBD的平行線交ACM,則MGF即為直線FG與平面A1ACC1所成的角易得,從而可得解.

方法一 過FBD的平行線交ACM,則MGF即為直線FG與平面A1ACC1所成的角.

設正方體棱長為1,,所以A1ACC1,所以

MFGF,∴sin ∠MGF.

方法二 如圖,分別以AB,AD,AA1x軸,y軸,z軸建立空間直角坐標系.

設正方體棱長為1,則易知平面A1ACC1的一個法向量為n=(-1,1,0).

FG,∴.

設直線FG與平面A1ACC1所成角為θ

sin θ=|cos〈n, 〉|=.

答案:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】邊長為的等邊三角形內任一點到三邊距離之和為定值,這個定值等于;將這個結論推廣到空間是:棱長為的正四面體內任一點到各面距離之和等于________________.(具體數(shù)值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an2+4an8Sn0,則an_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)過作直線,交(1)中軌跡兩點,若中點的縱坐標為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 山東省《體育高考方案》于20122月份公布,方案要求以學校為單位進行體育測試,某校對高三1班同學按照高考測試項目按百分制進行了預備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若90~100分數(shù)段的人數(shù)為2.

)請估計一下這組數(shù)據(jù)的平均數(shù)M;

)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為幫扶組,試求選出的兩人為幫扶組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若,證明:;

(2)已知,若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)試討論函數(shù)的單調性;

(2)若,證明:方程有且僅有3個不同的實數(shù)根.(附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】和平面解析幾何的觀點相同,在空間中,空間平面和曲面可以看作是適合某種條件的動點的軌跡,在空間直角坐標系中,空間平面和曲面的方程是一個三原方程.

1)類比平面解析幾何中直線的方程,寫出①過點,法向量為的平面的點法式方程;②平面的一般方程;③在,,軸上的截距分別為,的平面的截距式方程.(不需要說明理由)

2)設、為空間中的兩個定點,,我們將曲面定義為滿足的動點的軌跡,試建立一個適當?shù)目臻g直角坐標系,求曲面的方程.

3)對(2)中的曲面,指出和證明曲面的對稱性,并畫出曲面的直觀圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案