【題目】給定下列四個(gè)命題

若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

若一條直線和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線一定平行于另一個(gè)平面;

若一條直線和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線也和一個(gè)平面垂直;

若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直,

其中,真命題的個(gè)數(shù)是  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】

根據(jù)空間中的直線與平面以及平面與平面的平行與垂直關(guān)系,對題目中的命題判斷正誤即可.

對于,若一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行,錯(cuò)誤;

對于,若一條直線和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線平行于另一個(gè)平面或在這個(gè)平面內(nèi),錯(cuò)誤;

對于,若一條直線和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線也和一個(gè)平面垂直,正確;

對于,若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直,正確;

綜上所述,真命題的序號是,共2個(gè).

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將橢圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼囊话耄们C,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

已知點(diǎn)且直線l與曲線C交于A、B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為,過點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且,過,三點(diǎn)的圓恰好與直線相切.

求橢圓的方程;

過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),問在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì)

1)求1名顧客摸球2次停止摸獎(jiǎng)的概率:

2)記1名顧客5次摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù):

(I)當(dāng)時(shí),求的最小值;

(II)對于任意的都存在唯一的使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱臺的底面是正三角形,平面平面,.

(Ⅰ)求證:;

(Ⅱ)若和梯形的面積都等于,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人作游戲,甲先在紙上任意寫下一個(gè)由L、R構(gòu)成的長為的序列,然后乙將個(gè)質(zhì)量互不相同的砝碼逐一放在天平上,每放一個(gè)砝碼(已放的砝碼不再拿下),乙都在紙上按順序?qū)懸粋(gè)字母:如果天平傾向左邊則寫L,否則寫R.當(dāng)所有砝碼都放在天平上時(shí),乙也寫下一個(gè)由L、R構(gòu)成的長為的序列.規(guī)定:當(dāng)乙寫的序列與甲寫的序列相同時(shí)乙勝,否則甲勝.試問:誰有必勝策略?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為1的正方形沿軸滾動(dòng),點(diǎn)恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)的軌跡方程是,則對函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________

查看答案和解析>>

同步練習(xí)冊答案