經(jīng)過點(diǎn)A(0,3),且傾斜角α=120°的直線方程為( 。
A、y=
3
x+3
B、y=-
3
x-3
C、y=-
3
3
x+3
D、y=-
3
(x-
3
考點(diǎn):直線的點(diǎn)斜式方程
專題:直線與圓
分析:求出直線的斜率,即可利用點(diǎn)斜式方程求解即可.
解答:解:直線的傾斜角為120°的直線的斜率為:-
3

由點(diǎn)斜式方程可得直線方程為:y-3=-
3
x
,
即y=-
3
(x-
3
).
故選:D.
點(diǎn)評(píng):本題考查直線方程的求法,點(diǎn)斜式方程的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
=
a
+3
b
BC
=5
a
+3
b
,
CD
=-3
a
+3
b
,則( 。
A、A、B、C三點(diǎn)共線
B、A、B、D三點(diǎn)共線
C、A、C、D三點(diǎn)共線
D、B、C、D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan
θ
2
-
1
tan
θ
2
=3,則sin2θ=( 。
A、-
12
13
B、-
3
5
C、
3
5
D、
12
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∥β,A、C∈α,B、D∈β,直線AB、CD相交于S,且AS=8,BS=9,CD=34,則CS的長度為(  )
A、16B、20
C、272D、16或272

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)P(-4,3),傾斜角為45°的直線方程是(  )
A、x+y+7=0
B、x+y-7=0
C、x-y-7=0
D、x-y+7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程9x-15•3x+27=0的兩根是x1,x2,則x1+x2的值是( 。
A、15B、-15C、3D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)y=f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
2x-1
x+a
的圖象上有且僅有兩個(gè)不動(dòng)點(diǎn),試求a的取值范圍.
(2)已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R且a>0),滿足
f(0)≥1
f(1+sina)≤1(a∈R)
,且y=f(x)的圖象上有兩個(gè)不動(dòng)點(diǎn)(x1,x1),(x2,x2),記函數(shù)y=f(x)的對(duì)稱軸為x=x0,求證:如果x1<2<x2<4,那么x0>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f′(x)=3,則
lim
m→0
f(x0-m)-f(x0)
3m
等于(  )
A、3
B、
1
3
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3•a11=16,則a6=( 。
A、1B、2C、4D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案